

Navdeep Singh Dhindsa 02/08/2024 navdeep.s.dhindsa@gmail.com

Exploring Single-Flavor Dibaryons: A lattice perspective

Funding resources

Work in collaboration with

M. Padmanath (IMSc Chennai) and Nilmani Mathur (TIFR Mumbai)

Dibaryons - Status

- Deuteron only stable dibaryon
- 1950's Many predictions of various dibaryon states but failed experimental checks
- Experimental evidence of existence of d*
- •Recent renewal in interest due to discoveries of complex quark systems

Based on theory of strong interactions, we cannot rule out more dibaryons in nature.

Review by Clement **PPNP** (2016)

Lattice 2024

Navdeep Singh Dhindsa

Dibaryons - Status

Hyperon-Nucleon experimental results indicates:

- ΛN attractive, though less than NN, no strange deuteron.
- ΣN interaction even weaker than ΛN .

*Dihyperon other calculations vary from very deep bound (even more than Jaffe's prediction) to unbound.

Lattice QCD - gives bound result (8 MeV) - Large pion mass used.

Dineutron? Diproton?

NN scattering experiments indicates absence of bound state

Hyperon-Hyperon:

- $\Lambda\Lambda$ experiments does not rule out bound system.
- Jaffe prediction of dihyperons

Jaffe PRL 138 (1977) 195

Beane et al. PRL 106(2011) 162001

Inoue et al. PRL 106(2011) 162002

Dibaryons - Status

H dibaryon

NAGARA event - constraint on binding energy

Dedicated experiments for H dibaryon indicates existence unlikely but its existence not ruled out yet.

Next talk by Jeremy Green

Dyson and Xuong PRL 13 (1964) 815

1964 - Prediction of possible bound states They predicted mass of D_{03} (close to d* which was found later)

WASA @ COSY collaboration SAID Data Analysis Center PRL 112 (2014) 202301

Dibaryons - Lattice

Signal (
$$m_N$$
 hadron)
 $\propto e^{-m_N t}$

Error in propagator correlation function dominated by pions because of virtue of lower energy states

Signal to Noise ratio exponentially degrades for $m_a \rightarrow 0$

Lepage, TASI (1989)

Larger Pion Mass

Deuteron, Dineutron - Bound or Unbound ?? Tension between results

* Multiple ensembles for continuum limit.

* Even more computing power in contractions for exotic hadrons.

★ $m_{\pi}L \ge 4$, to constraint finite volume effects.

* Finer lattices for lesser discretisation errors.

Navdeep Singh Dhindsa

Hexaquark - Dibaryon

Hadron with 6 quarks

Extensive studies of deuteron like heavy dibaryons using Lattice QCD

We work with single flavored dibaryons composed of strange and charm quarks named as \mathscr{D}_{6s} and \mathscr{D}_{6c} respectively

02/08/2024

Lattice Setup

- Strange and charm masses set at physical values.
- Up and down set as degenerate masses heavier than physical values.
- Finest lattice used $a \approx 0.044$ fm with Volume as $64^3 \times 192$

Bazavov et al., PRD 87 (2013) 5, 054505

• Overlap action on background of Highly Improved Staggered Quark (HISQ) gauge configurations.

Masses from Lattice

Euclidean two point correlator as: $C_{ji}(t_f - t_i)$

 $\Rightarrow O_i(t_f)$ and $O_i(t_i)$ are the desired interpolating operators and $Z_i^n = \langle 0 | O_i | n \rangle$

***** Effective mass = log $\frac{C(t)}{C(t+1)}$

Wall source to point sink. Cross checked results with boxsink.

$$= \langle 0 | O_{j}(t_{f}) \bar{O}_{i}(t_{i}) | 0 \rangle = \sum_{n} \frac{Z_{i}^{n*} Z_{j}^{n}}{2m_{n}} e^{-m_{n}(t_{f}-t_{i})}$$

Dibaryon Operators

- Total wave function anti-symmetric under exchange of baryons.
- Single flavor baryons (symmetric).
- Assume only s wave interactions (symmetric) in dibaryon system.
- Color singlet baryons (symmetric)
- Hence Spin must be anti-symmetric which is in case of even spin (Spin 0 and 2)

 $\mathcal{O} = \epsilon_{abc} q^a_{\mu_1} q^b_{\mu_2} q^c_{\mu_2}$

$\mathcal{O}_d = \mathcal{O}_1 \cdot CG \cdot \mathcal{O}_2$

- Use reduction coefficients to project continuum based operators to suitable octahedral group.
- S = 0 continuum spin subduces to one dimensional A_1^+ irrep.
- S = 2 continuum spin subduces to two dimensional E^+ and three dimensional T_2^+ irrep.

Dibaryon Operators a,b - different embeddings $\mathcal{O}_{d,A_{1},1}^{[0]} = \frac{1}{2} \left({}^{a}H_{3/2} \ {}^{b}H_{-3/2} - {}^{a}H_{1/2} \ {}^{b}H_{-1/2} + {}^{a}H_{-1/2} \ {}^{b}H_{1/2} - {}^{a}H_{-3/2} \ {}^{b}H_{3/2} \right)$

For Spin 2, 5 such operators corresponding to E^+ and T_2^+ irrep.

S_z	Operator	State	
$\overline{3/2}$	$^{1}H_{3/2}$	111	
1/2	$^{1}H_{1/2}$	112 + 121 + 211	
-1/2	$ ^{1}H_{-1/2}$	122 + 212 + 221	
-3/2	$ ^{1}H_{-3/2}$	222	

Non Relativistic Embedding

For Spin 0, dibaryon operator corresponding to one dimensional A_1^+ irrep.

Operator	State
$^{2}H_{3/2}$	133 + 313 + 331
$^{2}H_{1/2}$	$233 {+} 323 {+} 332 {+} 134 {+} 341 {+} 413 {+} 143 {+} 431 {+} 314$
$^{2}H_{-1/2}$	$ 144\!+\!414\!+\!441\!+\!234\!+\!342\!+\!423\!+\!243\!+\!432\!+\!324$
$ ^{2}H_{-3/2}$	244 + 424 + 442

Relativistic Embedding

Operator Contraction

Two baryons at source and two at sink

R-R-N-N

720 contractions can happen in 16 different

ways depending on different embeddings

N-N-N-R	N-N-R-N	N-N-R-R
N-R-N-R	N-R-R-N	N-R-R-R
R-N-N-R	R-N-R-N	R-N-R-R
R-R-N-R	R-R-R-N	R-R-R-R

Some of these are degenerate and some of these do not contribute at all for different Spin cases

02/08/2024

Dibaryons results from Lattice

 $\mathcal{D}_{6b}, S=0$

Mathur, Padmanath, Chakraborty PRL, 130, 111901 (2023)

 $\mathcal{D}_{bc}, \mathcal{D}_{bs}, \mathcal{D}_{cs}, \mathcal{D}_{bu}, \mathcal{D}_{cu}$

Junnarkar, Mathur PRL, 123, 162003 (2019)

S = 1

 $\mathcal{H}_{bcs}, S=0$

Junnarkar, Mathur PRD, 106, 054511 (2022)

Where does \mathscr{D}_{6c} , \mathscr{D}_{6s} stand ??

ΩΩ (¹S₀)

- Weakly repulsive in Spin 0 H^+H^+ irrep, No bound state
- Attractive in Spin 1,2 $G_1^+H^+$ but only single volume used.

Lattice 2024

02/08/2024

Buchoff, Luu, Wasem PRD 85, 094511 (2012)

- Simulation with physical charm mass and near physical light quark mass.
- Dibaryon existence without Coulomb interaction.
- dibaryon calculation).

HALQCD PRL 127, 072003 (2021)

• Near unitary region with Coulomb interaction (scattering length less than corresponding strange

02/08/2024

- Two lattice volumes, 4 lattice spacings, this plot with L = 48

- Bound state, if exist, is shallow
- More probe using amplitude analysis

• Spin 2 - repulsive interactions, Spin 0 dibaryon energy same as twice of baryon (within error)

- Bound state, if exist, is shallow
- More probe using amplitude analysis

More probe using amplitude analysis

 \mathbf{X} We observe a positive shift in the S=2 channel, indicating a repulsive interaction and inability to host any bound state for both strange and charm systems. The charm sector, for spin zero, there is a slight tendency towards negative shifts, although these shifts have smaller magnitudes. The strange sector, for spin zero, the results generally suggest a non-interacting scenario, with weak interactions and potentially no bound states. A more precise conclusion can only be drawn with larger statistics and a comprehensive finite-volume amplitude study.

X Lattice estimation of d*(2380)...

02/08/2024

Navdeep Singh Dhindsa

