Non-perturbative study of Yang-Mills theory with four supercharges in two dimensions

Navdeep Singh Dhindsa

IISER Mohali

Aug 8, 2022

With Raghav G. Jha, Anosh Joseph, and David Schaich

Quick RECAP

Presented preliminary analysis in Lattice 2021.

⇒ Some remarks from the talk:

Scalars behaviour

Existence of bound state at finite temperature for U(N) with N=2,4,8,12. arXiv:2109.01001 [hep-lat] NSD, Jha, Joseph, Schaich

Comparison with 16 supercharge theory

Theory looks to be in different universality class to maximal theory.

Not discussed

Possible 'Spatial Deconfinement' transition.

This talk

- Overview of four supercharge theory on Lattice.
- Comparison with maximal theory in different coupling regimes.
- Signature of 'Spatial Deconfinement' transition and its possible order.
- Phase structure on rectangular torus.

Constructed from dimensional reduction of four dimensional theory.

$$\mathcal{N}$$
 = 1, d = 4 \rightarrow \mathcal{N} = (2,2), d = 2

- Not a "maximal" theory.
- No holographic dual "exists".
- Regularised on lattice using "twisting".

Phys. Rep. **484** (2009) 71-130 *Catterall, Kaplan, Ünsal*

Maximal Supersymmetric theories on Lattice talks:

Goksu Toga: Now TD-I

Angel Sherletov: Monday-5:10 pm

David Schaich: Monday-5:30 pm

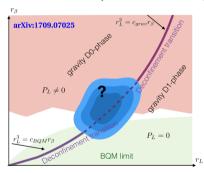
Arpith Kumar: Wednesday-4:50 pm

Continuum Action

$$S = \frac{N}{4\lambda} \mathcal{Q} \int d^2x \, \mathsf{Tr} \left(\chi_{ab} \mathcal{F}_{ab} + \eta \left[\overline{\mathcal{D}}_a, \mathcal{D}_a \right] - \frac{1}{2} \eta d \right)$$

After integrating out auxiliary field

$$S = rac{N}{4\lambda} \int d^2x \, {
m Tr} \left(-\overline{\mathcal{F}}_{ab} \mathcal{F}_{ab} + rac{1}{2} \left[\overline{\mathcal{D}}_a, \mathcal{D}_a
ight]^2 - \chi_{ab} \mathcal{D}_{[a} \, \psi_{\ b]} - \eta \overline{\mathcal{D}}_a \psi_a
ight)$$


$$S = \frac{N}{4\lambda} \int d^2x \, \mathrm{Tr} \left(-\overline{\mathcal{F}}_{ab} \mathcal{F}_{ab} + \frac{1}{2} \left[\overline{\mathcal{D}}_a, \mathcal{D}_a \right]^2 - \chi_{ab} \mathcal{D}_{[a} \, \psi_{\ b]} - \eta \overline{\mathcal{D}}_a \psi_a \right)$$

- Using geometrical discretization \rightarrow theory lives on 2d lattice. JHEP 11 (2004) 006 Catterall
- To control flat directions, scalar potential term added to discretized action.
 JHEP 11 (2012) 072
 Catterall, Damgaard, DeGrand, Galvez, Mehta
- Discretization used and all the observables studied can be accessed via publicly available software github.com/daschaich/susy.

Comparison with Two-dimensional $\mathcal{N}=(8,8)$ SYM

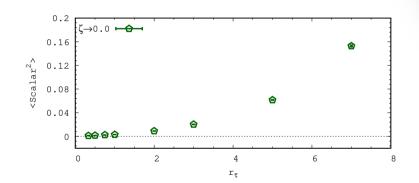
• At low temperature and large $N \Rightarrow$ dual to type IIB supergravity.

PRD **97**, 086020 (2018) Catterall, Jha, Schaich, Wiseman

Maximal theory prediction from gravity dual

- Scalars behave as: $Tr(X^2) \propto t$. JHEP **07** (2013) 101 Wiseman
- Energy density $\propto t^2$ (for t>1), $\propto t^3$ (for t<1). JHEP **07** (2013) 101 Wiseman
- First order GL Phase transition.
 PRL 70, 2837 (1993) Gregory, Laflamme

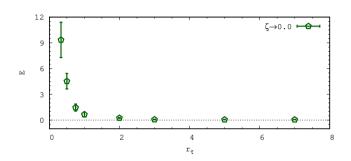
Back to Target Theory



⇒ Lattice simulations for four supercharge theory ←

- Worked with finite mass deformation parameter μ , $\mu=\zeta\frac{r_{\tau}}{N_{t}}=\zeta\sqrt{\lambda}a$, $r_{\tau}=1/t$, $0.33\leq r_{\tau}\leq 7.0$, $\zeta\in(0.2,0.3,0.4,0.5)$.
- $\begin{array}{ll} \bullet \ \ \mbox{Different Lattice aspect ratios} \ \alpha, \\ \alpha = \frac{N_x}{N_\tau} = \frac{r_x}{r_\tau} \qquad \alpha \in (0.5, 1.0, 1.5, 2.0). \end{array}$
- Different gauge groups, $2 \le N \le 20$
- Anti-periodic boundary conditions for fermions along temporal direction.

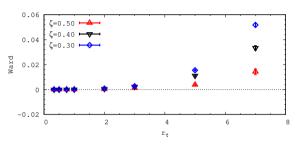
Scalar behaviour

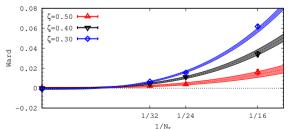


- $\operatorname{Scalar}^2 \leftrightarrow \operatorname{Tr}(X)^2$
- 24×24 lattice, N = 12.

- $r_{ au} > 1
 ightarrow r_{ au}^3$ behaviour, Maximal case $ightarrow 1/r_{ au}$.
- $r_{ au} < 1
 ightarrow r_{ au}$ behaviour, Maximal case ??

Energy density



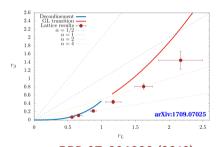

- $E = \frac{3}{\lambda_{lot}} \left(1 \frac{2}{3N^2} S_B \right)$
- 24×24 lattice, N = 12.

- $r_{\tau} > 1 \rightarrow r_{\tau}^{0}$ behaviour, Maximal case $\rightarrow 1/r_{\tau}^{3}$.
- $r_{ au} < 1
 ightarrow 1/r_{ au}^2$ behaviour, Maximal case $ightarrow 1/r_{ au}^2$.
- Vanishing energy density at zero temperature → Preserved SUSY.
 PRD 80, 065014 (2009) Hanada, Kanamori
 PRD 97, 054504 (2018) Catterall, Jha, Joseph

Ward Identity

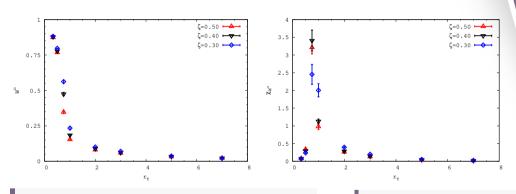
Ward Identity: $Q \sum_a (\eta \mathcal{U}_a \bar{\mathcal{U}}_a)$

- At larger temperatures $(r_{\tau} < 1)$, ward identity satisfied
- At smaller temperatures $(r_{\tau} > 1)$, satisfied at larger volume.


 24×24 lattice, N=12 Bottom left plot with $r_{\tau}=5.0.$

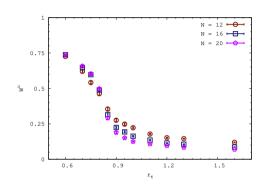
'Spatial deconfinement' in two-dimensional $\mathcal{N}=(2,2)$ SYM

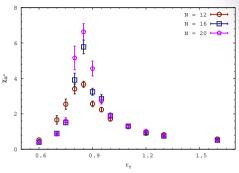
Spatial deconfinement


- Four supercharge theory: so far
 - Preserved SUSY.
 - Different behaviour compared with maximal case.
 - What about deconfinement transition? which exists in sixteen supercharge theory.

PRD **97**, 086020 (2018) Catterall, Jha, Schaich, Wiseman

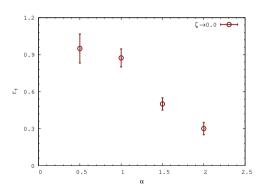
Spatial deconfinement - Signal




- Spatial wilson lines and its susceptibilty as order parameter for deconfinement transition.
- 24×24 lattice, N = 12.

- Transition around $r_{\tau} = 1.0$.
- Slight ζ dependence.

Spatial deconfinement - Order



- ullet Spatial wilson lines and its susceptibilty for different N values.
- 12×12 lattice, $\zeta = 0.30$.

- Critical r_{τ} independent of N.
- Hints of second-order transition.
 PRL 113, 091603 (2014)
 Azuma, Morita, Takeuchi

Phase transition vs Lattice aspect ratio

- N = 12, Lattices used 12×24 , 12×12 , 24×16 , 24×12 .
- r_{τ} (critical) has ζ dependence for $\alpha < 1$.

 Spatial deconfinement transition similar to maximal theory but restricted only in weaker coupling regime.

Conclusions

Spatial deconfinement

Spatial deconfinement phase transition observed in this theory with different lattice volumes.

Weak coupling behaviour

Similar to maximal theory, with different normalizations

- Phase transition observed.
- Energy density behaviour same.

Strong coupling behaviour

Different from maximal theory,

- No Phase transition.
- · Scalars behaviour different.
- Energy density behaviour different.

Open question

Holographic dual to two-dimensional $\mathcal{N}=(2,2)$ SYM - - - - ???

Thanks for your attention

Resources

Follow up