

Tensor network representation of non-abelian gauge theory

coupled to reduced staggered fermions

Muhammad Asaduzzaman ${ }^{*}$ and Yannick Meurice $\underbrace{\dagger}$

Department of Physics and Astronomy,
The University of Iowa, Iowa City, Iowa 52242, USA
Simon Catterall \ddagger and Goksu Can Toga ${ }^{\sqrt{8}}$
Department of Physics, Syracuse University, Syracuse, NY 13244, USA

Ryo Sakaif

Jij Inc., Bunkyo-ku, Tokyo 113-0031, Japan and Department of Physics, Syracuse University, Syracuse, NY 13244, USA (Dated: December 27, 2023)

Abstract
We show how to construct a tensor network representation of the path integral for reduced staggered fermions coupled to a non-abelian gauge field in two dimensions. The resulting formulation is both memory and computation efficient because reduced staggered fermions can be represented in terms of a minimal number of tensor indices while the gauge sector can be approximated using Gaussian quadrature with a truncation. Numerical results obtained using the Grassmann TRG algorithm are shown for the case of $S U(2)$ lattice gauge theory and compared to Monte Carlo results.

muhammad-asaduzzaman@uiowa.ed

yannick-meurice@uiowa.edu
 smcatter@syr.edu
 § gctoga@syr.edu

Before we discuss Tensor networks ...

Discretizing gauge theories on a spacetime lattice allows for powerful numerical simulations using MCMC methods.

Despite the great success, infamous sign problem restricts its usage in certain coupling regimes.

Last JC talk by Sayak

Sign Problem

Say S_{1}, S_{2} be two action values corresponding to two configurations C_{1}, C_{2}

If $S_{1}, S_{2} \in \mathbb{R}$, we can comment on which is bigger $e^{-S_{1}}, e^{-S_{2}}$

If $S_{1}, S_{2} \in \mathbb{C}$, can we comment on which is bigger? $e^{-S_{1}}, e^{-S_{2}}$

Which contribute to path integral more?

Sign Problem

Effective Action

$$
S=\int d \tau\left(-\frac{1}{2} \phi \partial_{\tau}^{2} \phi+\bar{\psi} \partial_{\tau} \psi+\bar{\psi} W^{\prime \prime}(\phi) \psi+\frac{1}{2}\left[W^{\prime}(\phi)\right]^{2}\right)
$$

$$
S=S_{B}-\log (\operatorname{det}(M))
$$

$$
\mathcal{Z}=\int \mathcal{D} \phi \mathcal{D} \bar{\psi} \mathcal{D} \psi e^{-S_{B}-S_{F}}
$$

Integrating out fermions

$$
\mathcal{Z}=\int \mathcal{D} \phi \operatorname{det}(M) e^{-S_{B}}
$$

ATTETMATVES

Quantum

Why Quantum Computation - Real time simulations with MC or classical simulation methods challenging

Qubit based approach highly used at the moment to
 study Lattice gauge theories using QC

How many qubits do we need to simulate even a sub parameter space of QCD ?
How long will it take to reach a sufficient number?

Alternatives

Classical
*Phase quenched Monte Carlo

- Complex Langevin
* Lefschetz Thimble
*Tensor Networks

Interested in
Numerical Bootstrap?

Tensor Networks

(O Tool to represent wave functions of quantum many body systems.
(0) Partition functions of target models can be visualized as an assembly obtained:

- by "wiring" together objects carrying multiple "legs"
- attached to the sites, links or plaquettes of a Euclidean space-time lattice

$$
\begin{aligned}
& \text { https://www.tensors.net } / \text { Introduction } \\
& \text { https://tensornetwork.org/trg } \mathcal{L} \text { - TRG (focus of the day) }
\end{aligned}
$$

Tensor Networks

$$
A=\left[\begin{array}{c}
A_{1} \\
A_{2} \\
\vdots \\
A_{m}
\end{array}\right]
$$

$$
\mathrm{B}=\left[\begin{array}{ccc}
B_{11} & \cdots & B_{1 n} \\
\vdots & \ddots & \vdots \\
B_{m 1} & \cdots & B_{m n}
\end{array}\right]
$$

Tensor representation

Tensor Networks

Contraction of Tensors

Tensor Networks

For $\mathbf{1 + 1}$ dimensional models various tensor network approaches have been used

MPS

DMRG

TRG

Scalability

TRG

Renormalization Group: Systematic investigation of changes of physical system as viewed at different scales.

In simpler terms: Replacing the elementary degrees of freedom by new averaged variables at larger scales.

Performing the same procedure to compute partition function by recursive blocking of tensors -- TRG

TRG

How to write partition function using tensor network algorithms?

Then weight of the configuration is given by:

$$
e^{-S(i, j, k, \ldots)}=T_{i j k} T_{i l m} T_{j n p} T_{k q r} \cdots
$$

Honeycomb Lattice with

$$
i, j, k-1,2, \ldots \ldots D
$$

How to write partition function using tensor network algorithms?

Partition function is obtained by taking the product of all the tensors, contracting the pairs of indices on each bond.

$$
Z=\sum_{i j k \ldots} e^{-S(i, j, k, \ldots)}=\sum_{i j k \ldots} T_{i j k} T_{i l m} T_{j n p} T_{k q r} \ldots
$$

$$
e^{-S(i, j, k, \ldots)}=T_{i j k} T_{i l m} T_{j n p} T_{k q r} \ldots
$$

Then weight of the configuration is given by:

Each iteration consists of two steps

* Approximate (involving SVD)
* Exact (Contraction)

$$
T_{i j k}^{\prime}=\sum_{p q r} S_{k p q} S_{j q r} S_{i r p}
$$

$\sum_{n} S_{l i n} S_{j k n} \approx \sum_{m} T_{i j m} T_{k l m}$

* Approximate (involving SVD)

$$
D^{2} \times D^{2} \quad(T T) \rightarrow D^{2} \times D(S)
$$

Find a matrix M s.t. $M=S . S^{T}$
which is not straightforward as we are comparing matrices with rank D^{2} and D

- Approximate (involving SVD)

Find a matrix M s.t. $M=S . S^{T}$
which is not straightforward as we are comparing matrices with rank D^{2} and D

$$
\begin{array}{r}
M_{l i, j k}=\sum_{n} s_{n} U_{l i, n} V_{j k, n}^{*} \\
\\
S_{l i n}^{A}=\sqrt{s_{n}} \tilde{U}_{l i, n}, S_{-}^{S k n} B=\sqrt{s_{n}} \tilde{V}_{j k, n}^{*}
\end{array}
$$

TRG

* Approximate (involving SVD)

Marienplatz
Plaza in Munich, Germany
3825×4861 real matrix

$$
D_{\text {cut }}=100
$$

$D_{\text {cut }}=300$
$D_{\text {cut }}=1000$

TRG

$\sum_{n} S_{l i n} S_{j k n} \approx \sum_{m} T_{i j m} T_{k l m}$

$$
T_{i j k}^{\prime}=\sum_{p q r} S_{k p q} S_{j q r} S_{i r p}
$$

TRG

- Iteratively proceed in same manner
* In this honeycomb example lattice points decreased by a factor of 3
* At last we are down to a single tensor

B Partition function is trace of this tensor

Scalability of this method - difficult though there exists other versions such as HOTRG

Non-Abelian Higgs Model in 2d

$$
\begin{gathered}
S_{g}=-\frac{\beta}{2} \sum_{x} \operatorname{Tr}\left[U_{x, 1} U_{x+\hat{1}, 2} U_{x+\hat{2}, 1}^{\dagger} U_{x, 2}^{\dagger}\right] \\
S_{\Phi}=-\frac{\kappa}{2} \sum_{x} \sum_{\mu=1}^{2} \rho_{x+\hat{\mu}} \rho_{x} \operatorname{Tr}\left[\alpha_{x+\hat{\mu}}^{\dagger} U_{x, \mu} \alpha_{x}\right] \\
V=\sum_{x} \rho_{x}^{2}+\lambda\left(\rho_{x}^{2}-1\right)^{2}
\end{gathered}
$$

Partition
Gauge-Matter term

Function

$$
Z=\int D[U] D[\rho] D[\alpha] e^{-S_{g}-S_{\Phi}-V}
$$

Wilson Action

Non-Abelian Higgs Model in 2d

Partition function in terms of character functions

$$
\begin{aligned}
& f(X \operatorname{Tr}[V])=\sum_{r=0}^{\infty} F_{r}(X) \chi^{r}(V) \\
& \chi^{r}\left(U_{1} U_{2} U_{3} \ldots U_{n}\right)=D_{n n}^{r}\left(U_{1} U_{2} U_{3} \ldots U_{n}\right) \\
& =D_{a b}^{r}\left(U_{1}\right) D_{b c}^{r}\left(U_{2}\right) \ldots D_{z a}^{r}\left(U_{n}\right)=D_{a b}^{r}\left(U_{x, 1}\right) D_{b c}^{r}\left(U_{x+\hat{1}, 2}\right) D_{d c}^{r *}\left(U_{x+\hat{2}, 1}\right) D_{a d}^{r *}\left(U_{x, 2}\right) \\
& \begin{aligned}
e^{-S_{g}} & =\exp \left\lfloor\frac{\beta}{2} \sum_{x} \operatorname{Tr}\left[U_{x, 1} U_{x+\hat{1}, 2} U_{x+\hat{2}, 1}^{\dagger} U_{x, 2}^{\dagger}\right]\right\rfloor \\
& =\prod \sum F_{r}(\beta) \chi^{r}\left(U_{x, 1} U_{x+\hat{1}, 2} U_{x+\hat{2}, 1}^{\dagger} U_{x, 2}^{\dagger}\right)
\end{aligned} \\
& \chi^{r}\left(U_{x, 1} U_{x+\hat{1}, 2} U_{x+\hat{2}, 1}^{\dagger} U_{x, 2}^{\dagger}\right) \\
& =D_{a b}^{r}\left(U_{x, 1}\right) D_{b c}^{r}\left(U_{x+\hat{1}, 2}\right) D_{c d}^{r \dagger}\left(U_{x+\hat{2}, 1}\right) D_{d a}^{r \dagger}\left(U_{x, 2}\right)
\end{aligned}
$$

Non-Abelian Higgs Model in 2d

- In 2d, two plaquettes associated with single link
* Another additional variable from gauge-matter term
* Three matrices associated with each link

$$
\begin{aligned}
& \sum_{n=-\sigma}^{\sigma} \int d U D_{m_{1} n_{1}}^{r_{1}}(U) D_{m_{2} n_{2}}^{r_{2} \dagger}(U) D_{n n}^{\sigma}(U) \\
& =\sum_{n=-\sigma}^{\sigma} \frac{1}{d_{r_{2}}} C_{r_{1} m_{1} \sigma n}^{r_{2} n_{2}} C_{r_{1} n_{1} \sigma n}^{r_{2} m_{2}}
\end{aligned}
$$

Integral over each link has form

Non-Abelian Higgs Model in 2d

Tensor on Plaquette

Tensors on link

Non-Abelian Higgs Model in 2d

Non-Abelian Higgs Model in 2d

Non-Abelian Higgs Model in 2d

Mass gap density as function of κ as continuum limit is taken

Non-Abelian Gauge Theory Coupled to Reduced Staggered Fermions

Naive discretisation \rightarrow Fermion Doubling
Staggered fermions - Does not erase the extra fermion copies completely but reduces the number

Since both spinor (not with staggered) and color index is involved with fermions - more tensor legs

O Computationally challenging

Non-Abelian Gauge Theory Coupled to Reduced Staggered Fermions

$$
\begin{aligned}
& S_{\mathrm{F}}[U]=\sum_{n}\left[m \bar{\psi}_{n} \psi_{n}+\sum_{\mu=1}^{2} \frac{\eta_{n, \mu}}{2}\left(\bar{\psi}_{n} U_{n, \mu} \psi_{n+\hat{\mu}}-\bar{\psi}_{n+\hat{\mu}} U_{n, \mu}^{\dagger} \psi_{n}\right)\right] \\
& Z_{\mathrm{F}}[U]=\int \mathcal{D} \bar{\psi} \mathcal{D} \psi \prod_{n} e^{-S_{\mathrm{F}}[U]} \\
&=\int \mathcal{D} \bar{\psi} \mathcal{D} \psi \prod_{n} \prod_{a=1}^{2} \sum_{s_{n}^{a}=0}^{1}\left(-m \bar{\psi}_{n}^{a} \psi_{n}^{a}\right)^{s_{n}^{a}} \\
& \cdot \prod_{a, b=1}^{2} \sum_{x_{n, 1}=0}^{1}\left(-\frac{\eta_{n, 1}}{2} \bar{\psi}_{n}^{a} U_{n, 1}^{a b} \psi_{n+\hat{1}}^{b}\right)^{x_{n, 1}^{a b}} \sum_{x_{n, 2}=0}^{1}\left(\frac{\eta_{n, 1}}{2} \bar{\psi}_{n+\hat{1}}^{a} U_{n, 1}^{b a *} \psi_{n}^{b}\right)^{x_{n, 2}^{a b}} \\
& \cdot \sum_{t_{n, 1}=0}^{1}\left(-\frac{\eta_{n, 2}}{2} \bar{\psi}_{n}^{a} U_{n, 2}^{a b} \psi_{n+\hat{2}}^{b}\right)^{t_{n, 1}^{a b}} \sum_{t_{n, 2}=0}^{1}\left(\frac{\eta_{n, 2}}{2} \bar{\psi}_{n+\hat{2}}^{a} U_{n, 2}^{b a *} \psi_{n}^{b}\right)^{t_{n, 2}^{a b}}
\end{aligned}
$$

Non-Abelian Gauge Theory Coupled to Reduced Staggered Fermions

© $\psi, \bar{\psi}$
© Color index
O Hopping index
We are not even considering the bond dimension from gauge sector as yet

Bond dimension $2^{2 \times 2 \times 2}=256$ with each fermion link

Non-Abelian Gauge Theory Coupled to Reduced Staggered Fermions

Solution the paper provides is reduced staggered fermions

Place ψ and $\bar{\psi}$ on odd and even sites respectively
$\psi_{n} \rightarrow\left(1-\epsilon_{n}\right) \psi_{n} / 2$

$$
S_{\mathrm{F}}[U]=\sum_{n} \sum_{\mu=1}^{2} \frac{\eta_{n, \mu}}{2} \psi_{n}^{\mathrm{T}} \mathcal{U}_{n, \mu} \psi_{n+\hat{\mu}} .
$$

$\bar{\psi}_{n} \rightarrow\left(1+\epsilon_{n}\right) \psi_{n} / 2$
Bond dimension reduced to $2^{2 \times 2}=16$

Non-Abelian Gauge Theory Coupled to Reduced Staggered Fermions

Proceeded with character expansion
Instead of using HOSVD for plaquette tensor they used HOOI

Advantage both in terms of memory and CPU

Process is to obtain a tensor with bond dimension less than original tensor

Non-Abelian Gauge Theory Coupled to Reduced Staggered Fermions

Without fermions

Non-Abelian Gauge Theory Coupled to Reduced Staggered Fermions

With fermions

THANK YOU

Navdeep Singh Dhindsa 15/02/2024

