Large Matrices on Lattice and Holography

IMSc, Chennai
30.03.2023

Lattice

Perturbation successful tool for investigating problems in particle physics but it breaks down for strongly interacting systems

- Confinement in QCD.
- Incorporating non-perturbative effects.
- Phase transitions.
- Beyond the Standard Model and String theory.

Lattice field theory provides a numerical technique to study non-perturbative phenomena by simulating the interactions of particles on a discrete space-time lattice.

Lattice

With the help of the Euclidean path integral, we can understand the dynamics of the theory by regularising it on a space-time lattice.

Real time to Euclidean path integral by Wick rotation, to avoid oscillations in numerical runs.

$$
\begin{aligned}
& \mathcal{Z}=\int \mathcal{D} \phi e^{i S[\phi(x)] / \hbar} \longrightarrow \mathcal{Z}=\int \mathcal{D} \phi e^{-S[\phi]} \\
& \langle\mathcal{O}\rangle=\mathcal{Z}^{-1} \int \mathcal{D} \phi \mathcal{O}[\phi(x)] e^{i S[\phi(x)] / \hbar} \\
& \langle\mathcal{O}\rangle=\mathcal{Z}^{-1} \int \mathcal{D} \phi \mathcal{O}[\phi] e^{-S[\phi]} \\
& \text { Example of discretizing fields } \\
& \text { on a lattice in QM setup } \\
& \phi(\tau) \rightarrow \phi_{\tau}, \\
& \frac{\partial \phi}{\partial \tau} \rightarrow \frac{\phi_{\tau+1}-\phi_{\tau}}{\mathrm{a}}, \\
& \int_{0}^{\beta} \rightarrow \mathrm{a} \sum_{0}^{N_{\tau}-1}
\end{aligned}
$$

Lattice

$$
\int_{0}^{\beta} \rightarrow a \sum_{0}^{N_{\tau}-1}
$$

Fields are simulated on different lattices with the help of Monte Carlo method.

Bigger lattices (with fixed size) will help us reach continuum limit.

Appropriate set of boundary conditions for different fields

Using Monte Carlo for a large number of steps, we get a Markov chain, which is a sequence of random field configurations

Periodic for Bosons
Anti-periodic for Fermions

$$
\langle\mathcal{O}\rangle=\mathcal{Z}^{-1} \int \mathcal{D} \phi \mathcal{O}[\phi] e^{-S[\phi]} \quad\langle\mathcal{O}\rangle=\frac{1}{N} \sum_{i=1}^{N} \mathcal{O}\left(\phi^{i}\right)
$$

Large Matrices

Point like fields \qquad $\rightarrow N \times N$ matrices (which can be many in number depending upon theory)

Connection is also a matrix

Outline

- Holographic motivation for studying theories non-perturbatively
- Lattice setup
- Supersymmetric Yang-Mills and their lattice construction
- Phase structure Bosonic BMN and $\mathscr{N}=(2,2) \mathrm{SYM}$
- Phase structure Conclusions and Future directions

Lattice QCD

On lattice we can study non-perturbative aspects of QCD

- Hadron masses
- Form factors
- Matrix elements
- Decay constants
-

Gauge/Gravity Duality

$4 \mathrm{~d} \mathscr{N}=4$ SYM dual to Type IIB supergravity in decoupling limit

Maximally supersymmetric Yang-Mills (MSYM) theory in $\mathrm{p}+1$ dimensions is dual to Dp-branes in supergravity at low temperatures in large N, strong coupling limit.

Fauge/Gravity Duality

$$
\begin{array}{ll}
\text { Gauge } \leftrightarrow \text { Gravity } & \begin{array}{l}
\text { Hence, if we want to study this conjecture from field } \\
\text { theory side, we need a non-perturbative setup. }
\end{array} \\
\text { Strong } \leftrightarrow \text { Weak } & \text { LATTICE is one such non-perturbative alternative. }
\end{array}
$$

Non-perturbative information of String theory with help of AdS/CFT, Matrix Models

- 4d MSYM difficult to simulate using lattice setup as computationally costly.
- This talk will revolve around non-conformal 1d and 2d theories, for which only a handful of lattice studies exist to probe duality.

Supersymmetry

$\mathcal{Q} \mid$ Boson $\rangle=\mid$ Fermion \rangle
$\mathcal{Q} \mid$ Fermion $\rangle=\mid$ Boson \rangle
But experimentally not observed and broken

However

- Not UV complete
- Many free parameters
- Hierachy problem
- Dark Matter
- ...

Beyond the SM

- String Theory
- Supersymmetric (SUSY) extension of SM
- Grand Unified Theories

All needs SUSY (in one form or the other)

SUSY on Lattice

SUSY algebra extension of Poincare algebra $\quad\{Q, \bar{Q}\} \sim P_{\mu}$

$P_{\mu} \rightarrow$ generates infinitesimal translations \rightarrow Broken on lattice

Lattice studies of supersymmetric gauge theories
Recent review: EPJ ST (2022) Schaich

Though SUSY broken on lattice but we can preserve a subset of the algebra

SUSY Yang-Mills theories discretized on lattice using "orbifolding" or "twisting" procedure
Phys.Rept. 484 (2009) 71-130 Catterall, Kaplan, Unsal

SUSY breaking

No SSB

SSB

$$
\left|b_{n+1}\right\rangle=\frac{1}{\sqrt{2 E_{n+1}}} \bar{Q}\left|f_{n}\right\rangle, \quad\left|f_{n}\right\rangle=\frac{1}{\sqrt{2 E_{n+1}}} Q\left|b_{n+1}\right\rangle \quad \quad\left|b_{n}\right\rangle=\frac{1}{\sqrt{2 E_{n}}} \bar{Q}\left|f_{n}\right\rangle, \quad\left|f_{n}\right\rangle=\frac{1}{\sqrt{2 E_{n}}} Q\left|b_{n}\right\rangle
$$

Hence AP boundary conditions used throughout runs

$$
\langle\mathcal{O}\rangle=\mathcal{Z}^{-1} \int \mathcal{D} \phi \mathcal{O}[\phi] e^{-S[\phi]} \text { obsenvaions sing numerical runs uneliable }
$$

SUSYOM on Iattice

Phys. Lett. B 105 (1981) 219-223
Nielsen, Ninomiya

- Bosonic fields to lattice sites.
- Fermionic fields to lattice sites - Fermionic Doubling

Fermions: $4 d$

- Naive: 16 fermions
- Ginsparg-Wilson: Not ultra local
- Staggered: 4 fermions
- Wilson: 1 fermion, ultra local action but chiral symmetry only recovered in continuum

Nielsen-Ninomiya no-go

theorem
Not possible to construct lattice fermion action which is:

- Ultra local
- Preserves chiral symmetry
- Has correct continuum limit
- No doublers

SUSYQM on Lattice

$$
S=\int d \tau\left(-\frac{1}{2} \phi \partial_{\tau}^{2} \phi+\bar{\psi} \partial_{\tau} \psi+\bar{\psi} W^{\prime \prime}(\phi) \psi+\frac{1}{2}\left[W^{\prime}(\phi)\right]^{2}\right)
$$

Still not ready to simulate

$$
\mathcal{Z}=\int \mathcal{D} \phi \mathcal{D} \bar{\psi} \mathcal{D} \psi e^{-S_{B}-S_{F}}
$$

- Fermionic matrix size depends upon number of lattice sites
- Computational cost of finding determinant is very high

> Integrating out fermions
$\mathcal{Z}=\int \mathcal{D} \phi \operatorname{det}(M) e^{-S_{B}}$
Conjugate

Algorithm

- RHMC algorithm

To deal with fractional powers of fermionic determinant

- Leapfrog algorithm

To evolve the system in simulation time steps

- Metropolis test

To accept/reject the proposed configuration

SYM families

Lower dimensional SYM theories can be constructed by dimensionally reducing higher dimensional $\mathscr{N}=1$ SYM theories

16 supersymmetries Maximal SYM family

8 supersymmetries 4 supersymmetries
Non-Maximal SYM families

Lattice construction using 'twisting' requires 2 d supersymmetries

- MPI based parallel code.
- Code is based on distributed memory systems. Can be tested on single-processor workstation or high performance computers.
- Performs RHMC simulations of SYM theories in various dimensions.
- Parallelization is between lattice sites, not on matrix degrees.

SUSY on Lattice

Lattice simulations of supersymmetric theories slightly complicated

- Broken SUSY on lattice
- Duality check requires runs at large N, computationally expensive
- Flat directions $\rightarrow\left[X_{i}, X_{j}\right]=0 \rightarrow$ but scalar eigenvalues keeps on increasing because of access to continuum branch of the spectra
- Sign problem \rightarrow Boltzmann factor e^{-s} cannot be used as weight in stochastic process

Finite \mathbf{N} effects

$$
S_{\mathrm{E}}=-\frac{N}{4 \lambda} \sum_{i, j} \operatorname{Tr}\left(\left[X^{i}, X^{j}\right]^{2}\right)
$$

Will tune eigenvalues of a (10×10) matrix constructed out of scalars of bosonic IKKT model

Flat directions

This runaway can be controlled by:

- Adding a deformation term to the action and then fine-tuning it to recover target theory.
- By working with very large \mathbf{N}.

Matrix Models

BFSS Model $\quad \begin{aligned} S_{\mathrm{BFSS}}=\frac{N}{4 \lambda} \int_{0}^{\beta} d \tau \operatorname{Tr}\left\{-\left(D_{\tau} X_{i}\right)^{2}\right. & -\frac{1}{2} \sum_{i<j}\left[X_{i}, X_{j}\right]^{2} \\ & \left.+\Psi_{\alpha}^{T} \gamma_{\alpha \sigma}^{\tau} D_{\tau} \Psi_{\sigma}+\Psi_{\alpha}^{T} \gamma_{\alpha \sigma}^{i}\left[X_{i}, \Psi_{\sigma}\right]\right\}\end{aligned}$

- $\mathrm{SO}(9)$ rotational symmetry

A recent study using Gaussian expansion shows this symmetry broken like IKKT model
arXiv:2209.01255 Brahma, Brandenberger, Laliberte

- Single deconfined phase in the theory

A recent study with first results of confined phase

BMIN Model

$$
S_{\mu}=-\frac{N}{4 \lambda} \int_{0}^{\beta} d \tau \operatorname{Tr}\left[\left(\frac{\mu}{3} X_{I}\right)^{2}+\left(\frac{\mu}{6} X_{A}\right)^{2}+\frac{\mu}{4} \Psi_{\alpha}^{T} \gamma_{\alpha \sigma}^{123} \Psi_{\sigma}-\frac{\sqrt{2} \mu}{3} \epsilon_{I J K} X_{I} X_{J} X_{K}\right]
$$

- Mass deformed version of BFSS
- $\mathrm{SO}(9)$ explicitly broken into $\mathrm{SO}(6) \times \mathrm{SO}(3)$
- First order phase transition

Free energy of gravity solution JHEP 03 (2015) 069
Costa, Greenspan, Penedones, Santoś

Numerical simulated results
PoS LATTICE21 (2022) 433
Schaich, Jha, Joseph

BMIN Model

Our setup

No fermions
\rightarrow Clear deconfinement transition even in BFSS model

Easier to simulate

$\rightarrow \quad$ Can work with large N setup

$$
\begin{aligned}
S_{\text {lat }}=\frac{N}{4 \lambda_{\text {lat }}} \sum_{n=0}^{N_{\tau}-1} \operatorname{Tr}\left[-\left(\mathcal{D}_{+} X_{i}\right)^{2}\right. & -\frac{1}{2} \sum_{i<j}\left[X_{i}, X_{j}\right]^{2} \\
& \left.-\left(\frac{\mu_{\text {lat }}}{3} X_{I}\right)^{2}-\left(\frac{\mu_{\text {lat }}}{6} X_{A}\right)^{2}+\frac{\sqrt{2} \mu_{\text {lat }}}{3} \epsilon_{I J K} X_{I} X_{J} X_{K}\right]
\end{aligned}
$$

Polyakov Loop

On lattice : $|P|=\left\langle\frac{1}{N}\right| \operatorname{Tr}\left(\prod_{n=0}^{N_{\tau}-1} U(n)\right)| \rangle$

Transition Order

$$
\left.\chi \equiv N^{2}\left(\left.\langle | P\right|^{2}\right\rangle-\langle | P| \rangle^{2}\right)
$$

- \quad Susceptibility peaks at same height with \boldsymbol{N}^{2} normalization
- First order phase transition PRL 113 (2014) 091603

Azuma, Morita, Takeuchi

Separatrix Ratio

Francis, Kaczmarek, Laine, Neuhaus, Ohno

Different phases

Angular distribution of Polyakov loop eigenvalues

$T=0.913, \mu_{\text {lat }}=2.0$ Non-uniform phase

$$
T=1.3, \mu_{\mathrm{lat}}=2.0
$$

Gapped phase

(20.9

- Phase diagram smoothly interpolates between bosonic BFSS and gauged Gaussian limit
0.0893 Adv.Theor.Math.Phys. 8 (2004) 603-696 Aharony et al.

Takeaway Bosonic BMN

- First order phase transition in the model at all values of couplings.
- Perturbative calculations valid upto a certain regime.
- Flat directions do not create any numerical problems, larger N required to get transition points for strong couplings.
- Numerical results smoothly interpolates between bosonic BFSS and gauged Gaussian limit.
- Separatrix method is a viable alternate option to investigate transition point.

For SYM theory in $(1+p)$ dimensions \quad Bosonic action density $\propto t^{p+1} \quad, \mathrm{t} \gg 1$

$$
\propto t^{(14-2 p) /(5-p)}, t \ll 1
$$

Lattice Results

In conformal case both these cases are equivalent

$$
p=2
$$

For SYM theory in $(1+p)$ dimensions

Lattice Results

Bosonic action density $\propto \mathrm{t}^{\mathrm{p}+1}$, $\mathrm{t} \gg 1$

$$
\propto t^{(14-2 p) /(5-p)}, t \ll 1
$$

In conformal case both these cases are equivalent

$$
p=1
$$

2d $\mathcal{Q}=4$ SYM

Regularized on lattice using "twisting"
Another alternative is "orbifolding"
Phys. Rept. 484 (2009) 71-130
Catterall, Kaplan, Unsal

Global symmetry:
Four-dimensional theory
$S O(4)_{E} \times U(1)$
Two-dimensional theory
$S O(2)_{E} \times S O(2)_{R_{1}} \times$ $U(1)_{R_{2}}$

- Two possible twists possible as symmetry group contains two SO(2)'s

A $\quad \mathrm{SO}(2)^{\prime}=\operatorname{diag}\left(\mathrm{SO}(2)_{E} \times \mathrm{U}(1)_{R_{2}}\right)$
B

$$
\mathrm{SO}(2)^{\prime}=\operatorname{diag}\left(\mathrm{SO}(2)_{E} \times \mathrm{SO}(2)_{R_{1}}\right)
$$

2d $\mathcal{Q}=4$ SYM

Regularized on lattice using "twisting"
Another alternative is "orbifolding"

Phys. Rept. 484 (2009) 71-130
 Catterall, Kaplan, Unsal

- Untwisted theory: 4 bosonic d.o.f., 4 fermionic d.o.f., 4 real supercharges
- Fermions, supercharges decomposed to integer spin representation and scalars, gauge fields combine to give complexified field
- Twisted theory: d.o.f. Fermions and complexified gauge field

A_{a}

2d $\mathcal{Q}=\mathbf{4}$ SYM

$\eta, \psi_{a}, \chi_{a b}$
Fermions

- Obtained by dimensionally reducing $\mathscr{N}=1$ SYM in 4d
- No holographic description

$$
\mathcal{Q} \mathcal{A}_{a}=\psi_{a}
$$

$$
\mathcal{Q} \chi_{a b}=-\overline{\mathcal{F}}_{a b},
$$

$$
\begin{aligned}
& S=\frac{N}{4 \lambda} \mathcal{Q} \int d^{2} x \operatorname{Tr}\left(\chi_{a b} \mathcal{F}_{a b}+\eta\left[\overline{\mathcal{D}}_{a}, \mathcal{D}_{a}\right]-\frac{1}{2} \eta d\right) \\
& {\left[\mathcal{D}_{a}, \mathcal{D}_{b}\right]} \\
& \partial_{a}+\mathcal{A}_{a} \\
& \mathcal{Q} \overline{\mathcal{A}}_{a}=0, \\
& \mathcal{Q} \eta=d,
\end{aligned}
$$

After performing \mathscr{Q} variation

2d $\mathcal{Q}=4$ SYM

$S=\frac{N}{4 \lambda} \int d^{2} x \operatorname{Tr}\left(-\overline{\mathcal{F}}_{a b} \mathcal{F}_{a b}+\frac{1}{2}\left[\overline{\mathcal{D}}_{a}, \mathcal{D}_{a}\right]^{2}-\chi_{a b} \mathcal{D}_{[a} \psi_{b]}-\eta \overline{\mathcal{D}}_{a} \psi_{a}\right)$

- Gauge field \rightarrow Wilson link
$\mathscr{A}_{a}(x) \rightarrow \mathscr{U}_{a}(n)$, on links of square lattice

On Lattice

- To preserve SUSY $\psi_{a}(\mathrm{n})$ lives on same links as bosonic superpartners
- $\quad \eta(n)$ associated with site
- $\quad \chi_{\mathrm{ab}}(\mathrm{n})$ lives on diagonal

$$
\begin{aligned}
& S=\frac{N}{4 \lambda_{\text {lat }}} \sum_{n} \operatorname{Tr}\left[-\overline{\mathcal{F}}_{a b}(n) \mathcal{F}_{a b}(n)+\frac{1}{2}\left(\overline{\mathcal{D}}_{a}^{(-)} \mathcal{U}_{a}(n)\right)^{2}\right. \\
&\left.-\chi_{a b}(n) \mathcal{D}_{[a}^{(+)} \psi_{b]}(n)-\eta(n) \overline{\mathcal{D}}_{a}^{(-)} \psi_{a}(n)\right],
\end{aligned}
$$

Simulation setup

- To control flat directions

$$
\begin{aligned}
& S_{\text {total }}=S+\frac{N \mu^{2}}{4 \lambda_{\text {lat }}} \sum_{n, a} \operatorname{Tr}\left(\overline{\mathcal{U}}_{a}(n) \mathcal{U}_{a}(n)-\mathbb{I}_{N}\right)^{2} \\
& \quad \mu=\zeta \frac{r_{\tau}}{N_{\tau}}=\zeta \sqrt{\lambda} \mathrm{a}=\zeta \sqrt{\lambda_{\text {lat }}}
\end{aligned}
$$

- Different aspect ratio lattices

$$
\alpha \equiv \frac{r_{x}}{r_{\tau}}=\frac{N_{x}}{N_{\tau}}
$$

- Different gauge groups, anti-periodic boundary conditions for fermions

Scalar ${ }^{2} \rightarrow \operatorname{Tr}\left(X^{2}\right)$
24×24 lattice, $N=12$

Lattice Results

JHEP 07 (2013) 101
Wiseman

- Behaviour different than maximal cousin
- Existence of bound state at finite temperature

Preserved SUSY

Lattice Results

24×24 lattice, $N=12$

$$
\mathcal{Q} \sum_{a}\left(\eta \mathcal{U}_{a} \bar{U}_{a}\right)
$$

$$
E=\frac{3}{\lambda_{\mathrm{lat}}}\left(1-\frac{2}{3 N^{2}} S_{B}\right)
$$

Lattice Results

Spatial deconfinement transition

24×24 lattice, $N=12$

Wilson loop along temporal and spatial direction

$$
r_{\tau}=0.5, \zeta=0.3
$$

MC time history

$$
r_{\tau}=1.0, \zeta=0.3
$$

Variance of spatial WL

$$
r_{\tau}=3.0, \zeta=0.3
$$

Phase diagram

Lattice Results

Different aspect ratio $\mathbf{a}, \mathrm{N}=12$

Problematic regime in numerical simulations

Takeaway 2d $\mathcal{Q}=4$ SYM

- Scalars show bound state behaviour
- Spatial deconfinement transition, but only limited to weak coupling regime
- Thermodynamics different than maximal counterpart
- More analysis required to probe if it admits holographic description : Open

Numerical Bootstrap

$\rightarrow \quad$ To derive the spectrum of the theory by checking the positivity of some of the observables.

- Taking the help of loop equations to connect various orders of observables.

$$
\mathcal{M}=\left[\begin{array}{cccc}
\left\langle O_{0}^{\dagger} O_{0}\right\rangle & \left\langle O_{0}^{\dagger} O_{1}\right\rangle & \cdots & \left\langle O_{0}^{\dagger} O_{K}\right\rangle \\
\left\langle O_{1}^{\dagger} O_{0}\right\rangle & \left\langle O_{1}^{\dagger} O_{1}\right\rangle & \cdots & \left\langle O_{1}^{\dagger} O_{K}\right\rangle \\
\vdots & \vdots & \ddots & \vdots \\
\left\langle O_{K}^{\dagger} O_{0}\right\rangle & \left\langle O_{K}^{\dagger} O_{1}\right\rangle & \cdots & \left\langle O_{K}^{\dagger} O_{K}\right\rangle
\end{array}\right] \geq 0
$$

Numerical Bootstrap
 $$
V=m \frac{X^{2}}{2}+g \frac{X^{4}}{4}
$$

$$
m W^{n}+g W^{n+2}=\sum_{j=0}^{n-2} W^{j} W^{n-2-j} \quad\left\langle\frac{1}{N} \operatorname{Tr}\left(X^{2}\right)\right\rangle=\frac{\left(12 g+m^{2}\right)^{1.5}-18 m g-m^{3}}{54 g^{2}}
$$

$$
\mathcal{M}=\left[\begin{array}{ccccc}
\left\langle X^{0}\right\rangle & \left\langle X^{1}\right\rangle & \left\langle X^{2}\right\rangle & \cdots & \left\langle X^{K}\right\rangle \\
\left\langle X^{1}\right\rangle & \left\langle X^{2}\right\rangle & \left\langle X^{3}\right\rangle & \cdots & \left\langle X^{K+1}\right\rangle \\
\vdots & \vdots & \ddots & \vdots \\
\left\langle X^{K}\right\rangle & \left\langle X^{K+1}\right\rangle & \left\langle X^{K+2}\right\rangle & \cdots & \left\langle X^{2 K}\right\rangle
\end{array}\right] \geq 0
$$

$$
\text { Plot with } m=1
$$

- This plot generated in less than 1 minute.
- But gets complicated as number of matrices increase

Numerical Bootstrap

$$
V=m \frac{X^{2}}{2}+g \frac{X^{4}}{4}
$$

$\rightarrow \quad$ Also useful when we have curve of solutions
Plot with $m=-1, g=1 / 16$

Can we improve Monte Carlo to sample all the vacua in large \mathbf{N} limit?

Future Directions

$\rightarrow \quad$ Numerical tools beyond Monte Carlo, especially for lower dimensional models

- Numerical bootstrap is a viable option to investigate Matrix Models JHEP 06 (2020) 090 Lin
$\rightarrow \quad$ Numerically investigating non-gauge/gravity JHEP 04 (2018) 084 Maldacena, Milekhin
- Recent numerical results JHEP 08 (2022) 178 Pateloudis et al.
\rightarrow Continue exploring non-maximal and maximal supersymmetric theories
\rightarrow Improving Monte Carlo Method

THANK YOU

Separatrix

PRD 91 (2015) 096002

Separatrix ratio vs r $N=32, \hat{\mu}=2$

BBMN Results

Energy $\hat{\mu}=6$

Polyakov Loop $\hat{\mu}=6$

First order transition

FIGURE 4.12: Polyakov loop magnitude distribution at three different temperatures for $\widehat{\mu}=$ 2.0 with $N=48$. A two-peak structure appears to develop more clearly as compared with lower N values.

AP BC Fermions

Thermal green function

$$
G_{B}\left(x, y, \tau_{1}, \tau_{2}\right)=Z^{-1} \operatorname{Tr}\left[e^{-\beta K} T\left[\hat{\phi}\left(x, \tau_{1}\right) \hat{\phi}\left(y, \tau_{2}\right)\right]\right]
$$

using step fn. with $\tau_{1}=\tau, \tau_{2}=0$ and cyclic property of trace

$$
\begin{gathered}
G_{B}(x, y, \tau, 0)=Z^{-1} \operatorname{Tr}\left[\hat{\phi}(y, 0) e^{-\beta K} \hat{\phi}(x, \tau)\right] \\
G_{B}(x, y, \tau, 0)=Z^{-1} \operatorname{Tr}\left[e^{-\beta K} e^{+\beta K} \hat{\phi}(y, 0) e^{-\beta K} \hat{\phi}(x, \tau)\right] \\
G_{B}(x, y, \tau, 0)=Z^{-1} \operatorname{Tr}\left[e^{-\beta K} \hat{\phi}(y, \beta) \hat{\phi}(x, \tau)\right]
\end{gathered}
$$

If ϕ 's are bosons last two interchanged gives $\phi(y, \beta)=\phi(y, 0)$, if ϕ 's are fermions (say ψ) last two interchanged gives extra -ve sign $\psi(y, \beta)=-\psi(y, 0)$, hence APBC for fermions

Bound state 2d

Bound state vs lattice size

Bound state vs gauge group

Transition order 2d

Wilson loop dependence on N

χ vs N hints second order phase transition

Maximal theory 2d

Fermion doubling

Dirac propagator free theory:

$$
S=\frac{m-i a^{-1} \sum_{\mu} \gamma^{\mu} \sin \left(p^{\mu} a\right)}{m^{2}+a^{-2} \sum_{\mu} \sin \left(p^{\mu} a\right)^{2}}
$$

For low momenta pole at $p^{\mu} a=(a m, 0,0,0)$

But fifteen additional poles at $p^{\mu} a=(a m, 0,0,0)+\pi^{\mu}$

As $\sin \left(p^{\mu} a\right)$ has two poles in range $p^{\mu}=[-\pi / a, \pi / a]$

