Large Matrices on Lattice and Holography

IMSc, Chennai

30.03.2023

Based on: 2201.08791, 2304.xxxxx

Lattice

Perturbation successful tool for investigating problems in particle physics but it breaks down for **strongly** interacting systems

- Confinement in QCD.
- Incorporating non-perturbative effects.
- Phase transitions.
- Beyond the Standard Model and String theory.

Lattice field theory provides a numerical technique to study non-perturbative phenomena by simulating the interactions of particles on a discrete space-time lattice.

Lattice

With the help of the Euclidean path integral, we can understand the dynamics of the theory by regularising it on a space-time lattice.

Real time to Euclidean path integral by Wick rotation, to avoid oscillations in numerical runs.

$$\mathcal{Z} = \int \mathcal{D}\phi \ e^{iS[\phi(x)]/\hbar} \qquad \qquad \mathcal{Z} = \int \mathcal{D}\phi \ e^{-S[\phi]}$$

$$\langle \mathcal{O} \rangle = \mathcal{Z}^{-1} \int \mathcal{D}\phi \, \mathcal{O}[\phi(x)] \, e^{iS[\phi(x)]/\hbar} \qquad \qquad \langle \mathcal{O} \rangle = \mathcal{Z}^{-1} \int \mathcal{D}\phi \, \mathcal{O}[\phi] \, e^{-S[\phi]}$$

Example of discretizing fields on a lattice in QM setup

$$\phi(\tau) \to \phi_{\tau}$$
,

$$\frac{\partial \phi}{\partial \tau} \to \frac{\phi_{\tau+1} - \phi_{\tau}}{a}, \qquad \int_0^\beta \to a \sum_0^{N_{\tau} - 1}$$

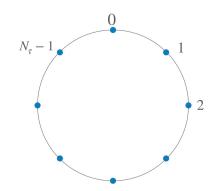
$$\int_0^\beta \to a \sum_0^{N_\tau - 1}$$

Lattice

$$\phi(\tau) \to \phi_{\tau}$$

$$\frac{\partial \phi}{\partial \tau} \to \frac{\phi_{\tau+1} - \phi_{\tau}}{a}, \qquad \qquad \int_{0}^{\beta} \to a \sum^{N_{\tau}-1}$$

$$\int_0^\beta \to a \sum_0^{N_\tau - 1}$$



Fields are simulated on different lattices with the help of **Monte Carlo** method.

Bigger lattices (with fixed size) will help us reach continuum limit.

Fixed —
$$\beta=aN_{ au}$$

Appropriate set of boundary conditions for different fields

Using Monte Carlo for a large number of steps, we get a Markov chain, which is a sequence of random field configurations

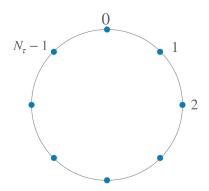
Periodic for Bosons Anti-periodic for Fermions

$$\langle \mathcal{O} \rangle = \mathcal{Z}^{-1} \int \mathcal{D}\phi \, \mathcal{O}[\phi] \, e^{-S[\phi]}$$

$$\langle \mathcal{O} \rangle = \frac{1}{N} \sum_{i=1}^{N} \mathcal{O}(\phi^{i})$$

Large Matrices

Connection is also a matrix



Outline

- Holographic motivation for studying theories non-perturbatively
- Lattice setup
- Supersymmetric Yang-Mills and their lattice construction
- Phase structure Bosonic BMN and $\mathcal{N}=(2,2)$ SYM
- Phase structure Conclusions and Future directions

Lattice QCD

On lattice we can study **non-perturbative** aspects of **QCD**

- Hadron masses
- Form factors
- Matrix elements
- Decay constants
-

Gauge/Gravity Duality

Adv. Theor. Math. Phys. 2 (1998) 231-252 Maldacena

4d N=4 SYM dual to Type IIB supergravity in decoupling limit

Maximally supersymmetric Yang-Mills (MSYM) theory in p+1 dimensions is dual to Dp-branes in supergravity at low temperatures in large N, strong coupling limit.

PRD **58** (1998) 046004 Itzhaki et al.

Gauge/Gravity Duality

Gauge ↔ Gravity

Strong ↔ Weak

Hence, if we want to study this conjecture from field theory side, we need a non-perturbative setup.

LATTICE is one such non-perturbative alternative.

Non-perturbative information of String theory with help of AdS/CFT, Matrix Models

- 4d MSYM difficult to simulate using lattice setup as computationally costly.
- This talk will revolve around non-conformal 1d and 2d theories, for which only a handful of lattice studies exist to probe duality.

Supersymmetry

Beautiful and elegant way to connect bosons and fermions

$$Q|Boson\rangle = |Fermion\rangle$$

But experimentally not observed and broken

$$Q|Fermion\rangle = |Boson\rangle$$

Dynamical breaking can only happen because of non-perturbative effects

Standard Model is highly successful

However

- Not UV complete
- Many free parameters
- Hierachy problem
- Dark Matter
- ...

Beyond the SM

- String Theory
- Supersymmetric (SUSY) extension of SM
- Grand Unified Theories

All needs SUSY (in one form or the other)

SUSY on Lattice

SUSY algebra extension of Poincare algebra $\{Q,Q\} \sim P_{\mu}$

P_{...} → generates infinitesimal translations → Broken on lattice

Lattice studies of supersymmetric gauge theories

Recent review: EPJ ST (2022) Schaich

Though SUSY broken on lattice but we can preserve a subset of the algebra

SUSY Yang-Mills theories discretized on lattice using "orbifolding" or "twisting" procedure

Phys.Rept. 484 (2009) 71-130 Catterall, Kaplan, Unsal

Vice-versa not generally true.

No SSB

$$|b_{n+1}\rangle = \frac{1}{\sqrt{2E_{n+1}}}\bar{Q}|f_n\rangle, \quad |f_n\rangle = \frac{1}{\sqrt{2E_{n+1}}}Q|b_{n+1}\rangle$$

SSB

$$|b_n\rangle = \frac{1}{\sqrt{2E_n}}\bar{Q}|f_n\rangle, \quad |f_n\rangle = \frac{1}{\sqrt{2E_n}}Q|b_n\rangle$$

Does not vanish $\tilde{\mathcal{Z}} \ \equiv \ \mathcal{W} = \mathrm{Tr} \left[(-1)^F e^{-\beta H} \right]$

Hence AP boundary conditions used throughout runs

$$\langle \mathcal{O} \rangle = \mathcal{Z}^{-1} \int \mathcal{D}\phi \; \mathcal{O}[\phi] \; e^{-S[\phi]} \;$$
 Observations using numerical runs unreliable

SUSYQM on Lattice

- Bosonic fields to lattice sites.
- Fermionic fields to lattice sites Fermionic Doubling

Fermions: 4d

- Naive: 16 fermions
- Ginsparg-Wilson: Not ultra local
- Staggered: 4 fermions
- Wilson: 1 fermion, ultra local action but chiral symmetry only recovered in continuum

Phys. Lett. B **105** (1981) 219-223 Nielsen, Ninomiya

Nielsen-Ninomiya no-go theorem

Not possible to construct lattice fermion action which is:

- Ultra local
- Preserves chiral symmetry
- Has correct continuum limit
- No doublers

SUSYQM on Lattice

$$S = \int d\tau \left(-\frac{1}{2} \phi \partial_{\tau}^{2} \phi + \overline{\psi} \partial_{\tau} \psi + \overline{\psi} W''(\phi) \psi + \frac{1}{2} \left[W'(\phi) \right]^{2} \right)$$

Still not ready to simulate

- Fermionic matrix size depends upon number of lattice sites
- Computational cost of finding determinant is very high

Hence an alternative is required

$$\mathcal{Z} = \int \mathcal{D}\phi \mathcal{D}\overline{\psi} \mathcal{D}\psi \ e^{-S_B - S_F}$$

Integrating out fermions

$$\mathcal{Z} = \int \mathcal{D}\phi \det(M) e^{-S_B}$$

PSEUDO-FERMIONS

$$\sqrt{\det(M^TM)} \ = \ \int \mathcal{D}\chi \ e^{-\chi^T(M^TM)^{-1}\chi} \ ^{\text{Gradient Algorithm}}$$

Conjugate

Algorithm

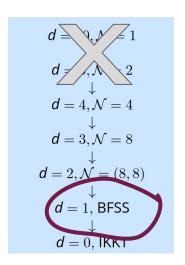
- RHMC algorithm

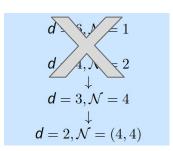
 To deal with fractional powers of fermionic determinant
- Leapfrog algorithm
 To evolve the system in simulation time steps
- Metropolis test
 To accept/reject the proposed configuration

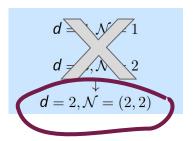
SYM families

Lower dimensional SYM theories can be constructed by dimensionally reducing higher dimensional N=1 SYM theories

16 supersymmetries Maximal SYM family







Lattice construction using 'twisting' requires 2^d supersymmetries

• MPI based parallel code.

 Evolved from MILC code (which is developed by MIMD Lattice computation collaboration).

• Code is based on distributed memory systems. Can be tested on single-processor workstation or high performance computers.

 Performs RHMC simulations of SYM theories in various dimensions.

• Parallelization is between lattice sites, not on matrix degrees.

SUSY on Lattice

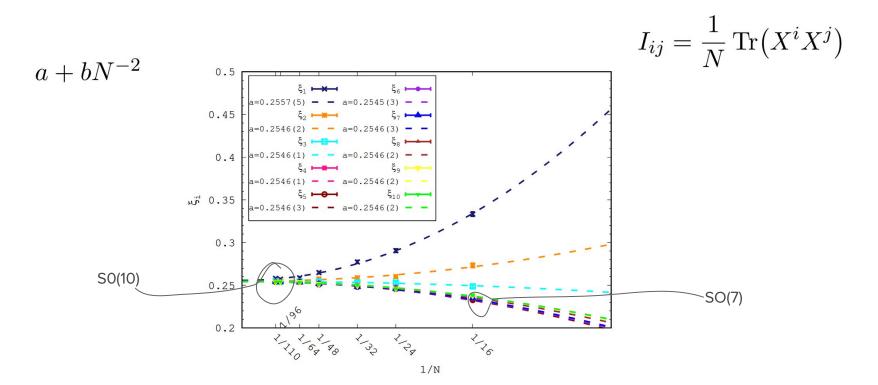
Lattice simulations of supersymmetric theories slightly complicated

- Broken SUSY on lattice
- Duality check requires runs at large N, computationally expensive
- Flat directions \rightarrow [X_i, X_j] = 0 \rightarrow but scalar eigenvalues keeps on increasing because of access to continuum branch of the spectra
- Sign problem → Boltzmann factor e^{-S} cannot be used as weight in stochastic process

Finite N effects

$$S_{\rm E} = -\frac{N}{4\lambda} \sum_{i,j} {\rm Tr}([X^i, X^j]^2)$$

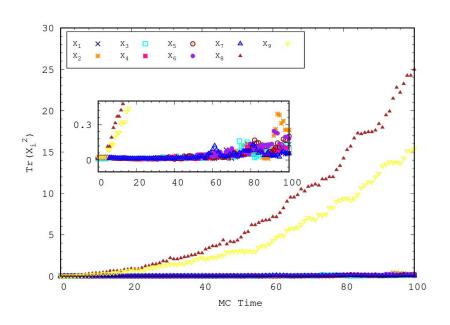
Will tune eigenvalues of a (10 x 10) matrix constructed out of scalars of bosonic IKKT model



Flat directions

BFSS model

Runaway of scalars



This runaway can be controlled by:

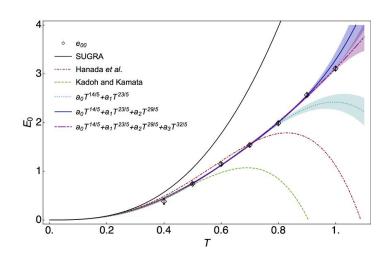
- Adding a deformation term to the action and then fine-tuning it to recover target theory.
- By working with very large **N**.

Matrix Models

Back to Maximal theories

$$S_{\text{BFSS}} = \frac{N}{4\lambda} \int_0^\beta d\tau \, \text{Tr} \Big\{ - (D_\tau X_i)^2 - \frac{1}{2} \sum_{i < j} [X_i, X_j]^2 \Big\}$$

$$+\Psi_{\alpha}^{T}\gamma_{\alpha\sigma}^{\tau}D_{\tau}\Psi_{\sigma}+\Psi_{\alpha}^{T}\gamma_{\alpha\sigma}^{i}\left[X_{i},\Psi_{\sigma}\right]\right\}$$



SO(9) rotational symmetry

A recent study using Gaussian expansion shows this symmetry broken like IKKT model

<u>arXiv:2209.01255</u> Brahma, Brandenberger, Laliberte

Single deconfined phase in the theory

A recent study with first results of confined phase JHEP 05 (2022) 096 Bergner et al.

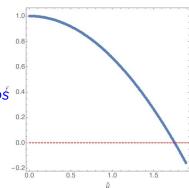
BMN Model

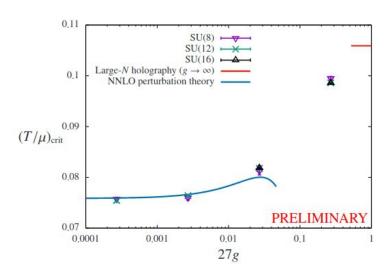
$$S_{\mu} = -\frac{N}{4\lambda} \int_0^{\beta} d\tau \operatorname{Tr} \left[\left(\frac{\mu}{3} X_I \right)^2 + \left(\frac{\mu}{6} X_A \right)^2 + \frac{\mu}{4} \Psi_{\alpha}^T \gamma_{\alpha\sigma}^{123} \Psi_{\sigma} - \frac{\sqrt{2}\mu}{3} \epsilon_{IJK} X_I X_J X_K \right]$$

- Mass deformed version of BFSS
- SO(9) explicitly broken into SO(6) X SO(3)
- First order phase transition

Free energy of gravity solution <u>JHEP 03 (2015) 069</u>

Costa, Greenspan, Penedones, Santoś 0.4





Numerical simulated results

PoS LATTICE21 (2022) 433 Schaich, Jha, Joseph

Open: Other thermodynamic properties ??

BMN Model

Our setup

No fermions

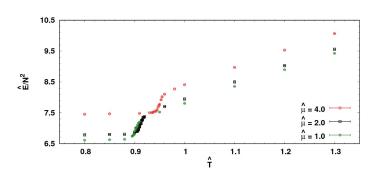
→ Clear deconfinement transition even in BFSS model

Easier to simulate

→ Can work with large N setup

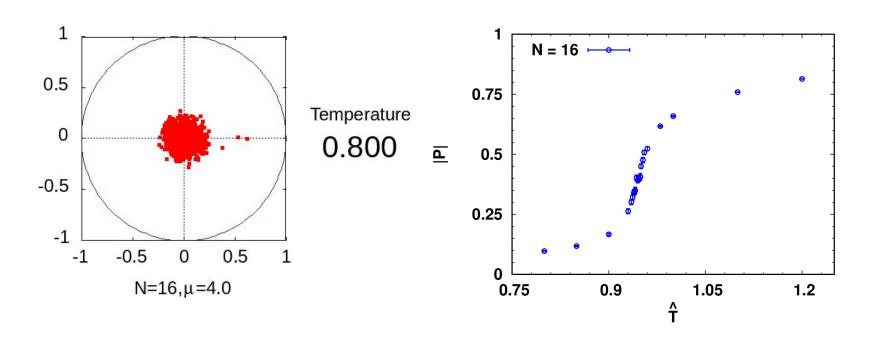
$$S_{\text{lat}} = \frac{N}{4\lambda_{\text{lat}}} \sum_{n=0}^{N_{\tau}-1} \text{Tr} \left[-(\mathcal{D}_{+}X_{i})^{2} - \frac{1}{2} \sum_{i < j} [X_{i}, X_{j}]^{2} - \left(\frac{\mu_{\text{lat}}}{6} X_{A}\right)^{2} + \frac{\sqrt{2}\mu_{\text{lat}}}{3} \epsilon_{IJK} X_{I} X_{J} X_{K} \right]$$

$$\frac{\widehat{E}}{N^2} \equiv \frac{E}{\lambda^{1/3} N^2} = \frac{1}{4N \lambda_{\text{lat}}^{4/3} N_{\tau}} \left\langle \sum_{n=0}^{N_{\tau}-1} \text{Tr} \left(-\frac{3}{2} \sum_{i < j} [X_i, X_j]^2 - \frac{2\mu_{\text{lat}}^2}{9} X_I^2 - \frac{\mu_{\text{lat}}^2}{18} X_A^2 + \frac{5\sqrt{2}\mu_{\text{lat}}}{6} \epsilon_{IJK} X^I X^J X^K \right) \right\rangle$$



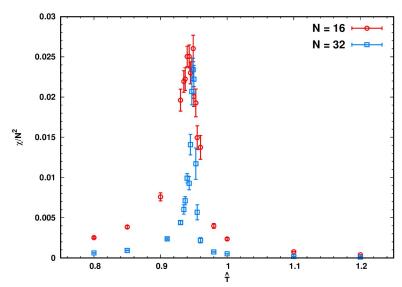
Polyakov Loop

On lattice :
$$|P| = \left\langle \frac{1}{N} \left| \operatorname{Tr} \left(\prod_{n=0}^{N_{\tau}-1} U(n) \right) \right| \right\rangle$$



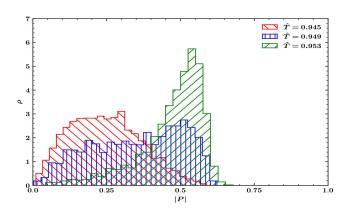
Transition Order

$$\chi \equiv N^2 \left(\left\langle |P|^2 \right\rangle - \left\langle |P| \right\rangle^2 \right)$$



Susceptibility peaks at same height with N² normalization

First order phase transition <u>PRL 113 (2014) 091603</u>
 Azuma, Morita, Takeuchi

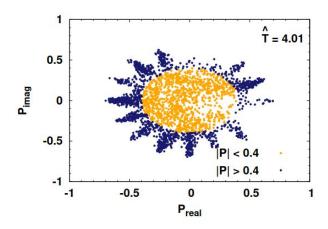


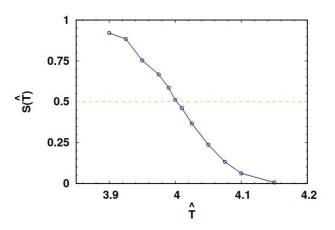
JHEP 05 (2022) 169 NSD, Jha, Joseph, Samlodia, Schaich

Separatrix Ratio

PRD 91 (2015) 096002

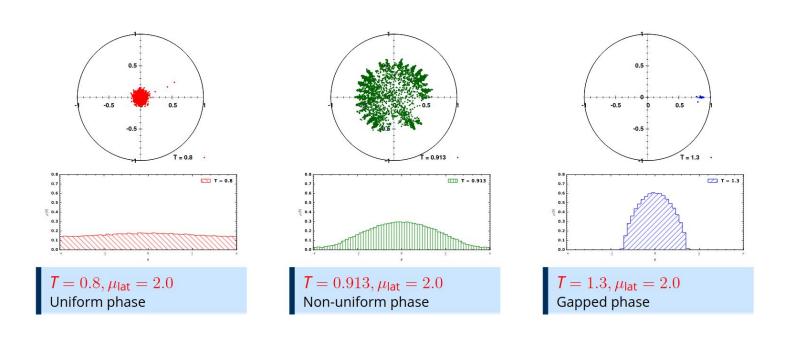
Francis, Kaczmarek, Laine, Neuhaus, Ohno

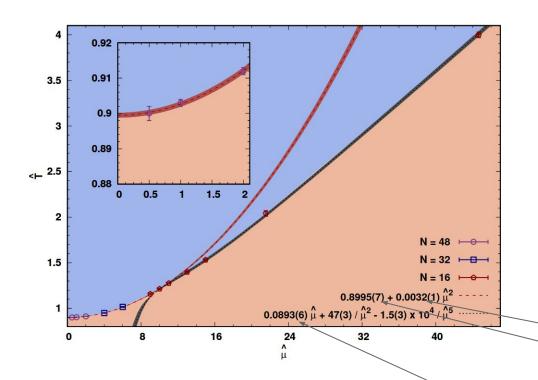




Different phases

Angular distribution of Polyakov loop eigenvalues





Phase Diagram

Perturbative calculation valid until $\mu \approx 10$, below it we enter strong coupling regime

First-order phase transition at all couplings

0.00330(2) <u>JHEP **05** (2022) 096</u> 0.8846(1) Bergner et al.

 Phase diagram smoothly interpolates between bosonic BFSS and gauged Gaussian limit

0.0893 <u>Adv.Theor.Math.Phys.</u> **8** (2004) 603-696 Aharony et al.

Takeaway Bosonic BMN

- First order phase transition in the model at all values of couplings.
- Perturbative calculations valid upto a certain regime.
- Flat directions do not create any numerical problems, larger *N* required to get transition points for strong couplings.
- Numerical results smoothly interpolates between bosonic BFSS and gauged Gaussian limit.
- Separatrix method is a viable alternate option to investigate transition point.

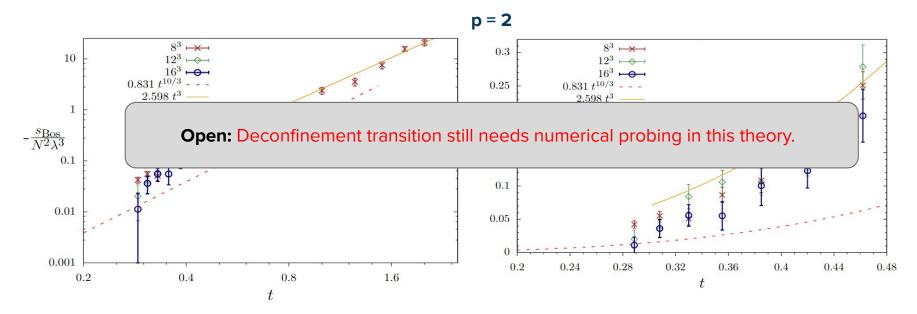
For SYM theory in (1+p) dimensions

Bosonic action density
$$\propto t^{p+1}$$

$$\propto t^{(14-2p)/(5-p)}$$
, t << 1

Lattice Results

In conformal case both these cases are equivalent



PRD 102 (2020) 106009 Catterall, Giedt, Jha, Schaich, Wiseman

For SYM theory in (1+p) dimensions

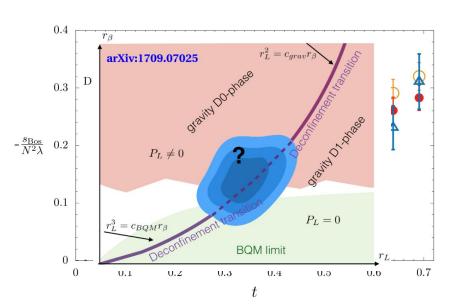
Bosonic action density
$$\propto$$
 t^{p+1}

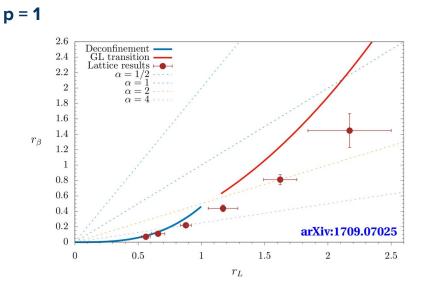
$$\propto t^{(14-2p)/(5-p)}$$
, t << 1

t >> 1

Lattice Results

In conformal case both these cases are equivalent





Regularized on lattice using "twisting"

Another alternative is "orbifolding"

Global symmetry:

Four-dimensional theory $SO(4)_E \times U(1)$

Two-dimensional theory

$$SO(2)_{E} \times SO(2)_{R_1} \times U(1)_{R_2}$$

Phys. Rept. 484 (2009) 71-130 Catterall, Kaplan, Unsal

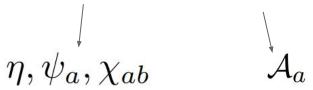
 Two possible twists possible as symmetry group contains two SO(2)'s

$$SO(2)' = diag(SO(2)_E \times SO(2)_{R_1})$$

Regularized on lattice using "**twisting**" Another alternative is "**orbifolding**"

Phys. Rept. 484 (2009) 71-130 Catterall, Kaplan, Unsal

- Untwisted theory: 4 bosonic d.o.f., 4 fermionic d.o.f., 4 real supercharges
- Fermions, supercharges decomposed to integer spin representation and scalars, gauge fields combine to give complexified field
- Twisted theory: d.o.f. Fermions and complexified gauge field



2d Q = 4 SYM

 η, ψ_a, χ_{ab}

- Obtained by dimensionally reducing $\mathcal{N}=1$ SYM in 4d
- No holographic description

$$S = \frac{N}{4\lambda} \mathcal{Q} \int d^2x \operatorname{Tr} \left(\chi_{ab} \mathcal{F}_{ab} + \eta \left[\overline{\mathcal{D}}_a, \mathcal{D}_a \right] - \frac{1}{2} \eta d \right)$$

$$\left[\mathcal{D}_a, \mathcal{D}_b \right] \qquad \partial_a + \mathcal{A}_a$$

$$\mathcal{Q}_{A_a} = \psi_a, \qquad \mathcal{Q}_{\overline{\mathcal{A}}_a} = 0, \qquad \mathcal{Q}_{\psi_a} = 0,$$

$$\mathcal{Q}_{\chi_{ab}} = -\overline{\mathcal{F}}_{ab}, \qquad \mathcal{Q}_{\eta} = d, \qquad \mathcal{Q}_{d} = 0.$$

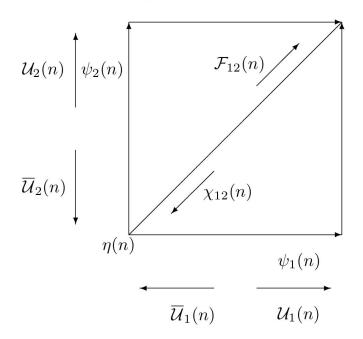
After performing \mathcal{Q} variation

2d Q = 4 SYM

$$S = \frac{N}{4\lambda} \int d^2x \operatorname{Tr} \left(-\overline{\mathcal{F}}_{ab} \mathcal{F}_{ab} + \frac{1}{2} \left[\overline{\mathcal{D}}_a, \mathcal{D}_a \right]^2 - \chi_{ab} \mathcal{D}_{[a} \psi_{b]} - \eta \overline{\mathcal{D}}_a \psi_a \right)$$

On

Lattice



- Gauge field \Rightarrow Wilson link $\mathscr{A}_{a}(x) \Rightarrow \mathscr{U}_{a}(n)$, on links of square lattice
- To preserve SUSY $\psi_{\rm a}$ (n) lives on same links as bosonic superpartners
- η(n) associated with site
- χ_{ab} (n) lives on diagonal

$$S = \frac{N}{4\lambda_{\text{lat}}} \sum_{n} \text{Tr} \left[-\overline{\mathcal{F}}_{ab}(n) \mathcal{F}_{ab}(n) + \frac{1}{2} \left(\overline{\mathcal{D}}_{a}^{(-)} \mathcal{U}_{a}(n) \right)^{2} - \chi_{ab}(n) \mathcal{D}_{[a}^{(+)} \psi_{b]}(n) - \eta(n) \overline{\mathcal{D}}_{a}^{(-)} \psi_{a}(n) \right],$$

Simulation setup

• To control flat directions

$$S_{\text{total}} = S + \frac{N\mu^2}{4\lambda_{\text{lat}}} \sum_{n,a} \text{Tr} \left(\overline{\mathcal{U}}_a(n) \mathcal{U}_a(n) - \mathbb{I}_N \right)^2$$

• Worked with different mass deformations

$$\mu = \zeta \frac{r_{\tau}}{N_{\tau}} = \zeta \sqrt{\lambda} a = \zeta \sqrt{\lambda_{\text{lat}}}$$

• Different aspect ratio lattices

$$\alpha \equiv \frac{r_x}{r_\tau} = \frac{N_x}{N_\tau}$$

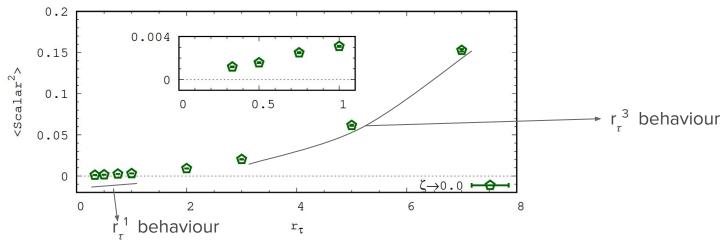
• Different gauge groups, anti-periodic boundary conditions for fermions

Scalar² \rightarrow Tr (X^2) 24 x 24 lattice, N =12

JHEP **07** (2013) 101

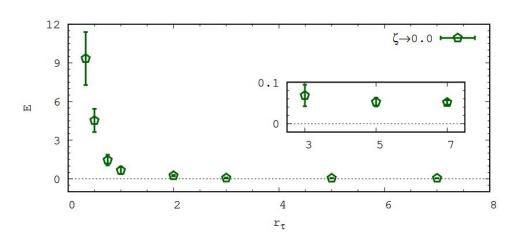
Wiseman

- Behaviour different than maximal cousin
- Existence of bound state at finite temperature

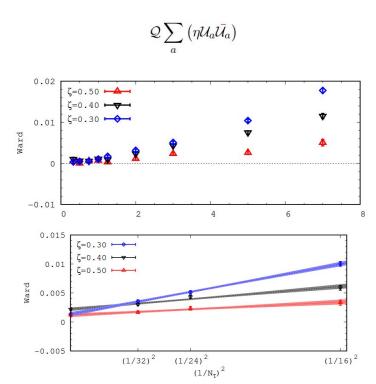


Preserved SUSY

 24×24 lattice, N = 12



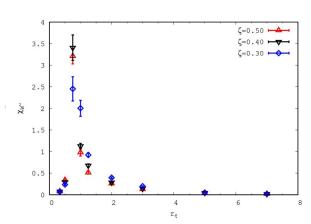
$$E = \frac{3}{\lambda_{\text{lat}}} \left(1 - \frac{2}{3N^2} S_B \right)$$

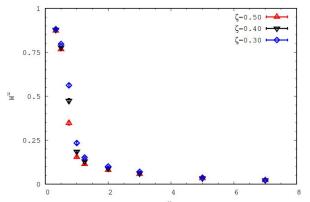


Spatial deconfinement transition

 24×24 lattice, N = 12

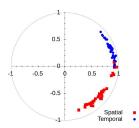
Wilson loop along temporal and spatial direction

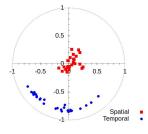


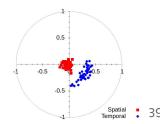


Variance of spatial WL

$$r_{\tau}$$
=3.0, ζ =0.3

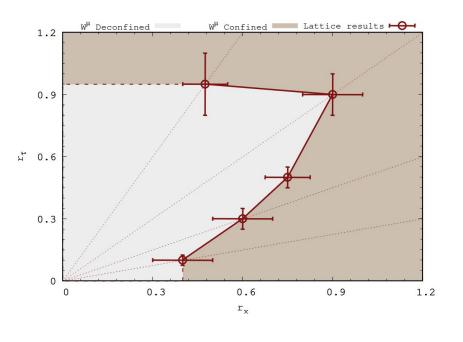


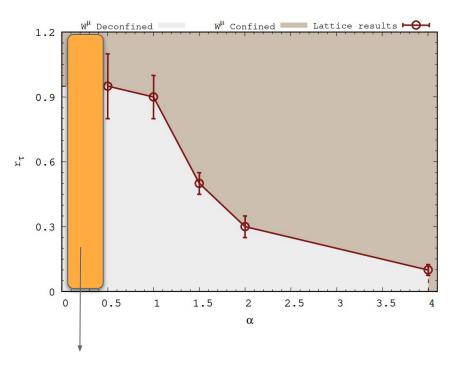




Phase diagram

Different aspect ratio \mathbf{a} , N =12





Problematic regime in numerical simulations

Takeaway 2d Q = 4 SYM

- Scalars show bound state behaviour.
- Spatial deconfinement transition, but only limited to weak coupling regime
- Thermodynamics different than maximal counterpart
- More analysis required to probe if it admits holographic description : Open

Numerical Bootstrap

→ To derive the spectrum of the theory by checking the positivity of some of the observables.

◆ Taking the help of loop equations to connect various orders of observables.

$$\mathcal{M} = \begin{bmatrix} \left\langle O_0^{\dagger} O_0 \right\rangle & \left\langle O_0^{\dagger} O_1 \right\rangle & \cdots & \left\langle O_0^{\dagger} O_K \right\rangle \\ \left\langle O_1^{\dagger} O_0 \right\rangle & \left\langle O_1^{\dagger} O_1 \right\rangle & \cdots & \left\langle O_1^{\dagger} O_K \right\rangle \\ \vdots & \vdots & \ddots & \vdots \\ \left\langle O_K^{\dagger} O_0 \right\rangle & \left\langle O_K^{\dagger} O_1 \right\rangle & \cdots & \left\langle O_K^{\dagger} O_K \right\rangle \end{bmatrix} \ge 0$$

Numerical Bootstrap

$$V = m\frac{X^2}{2} + g\frac{X^4}{4}$$

$$mW^n + gW^{n+2} = \sum_{j=0}^{n-2} W^j W^{n-2-j}$$

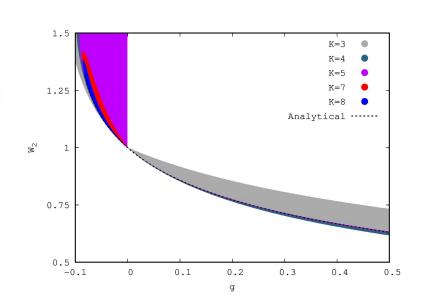
$$mW^{n} + gW^{n+2} = \sum_{j=0}^{n-2} W^{j}W^{n-2-j} \qquad \left\langle \frac{1}{N} \operatorname{Tr} \left(X^{2} \right) \right\rangle = \frac{(12g + m^{2})^{1.5} - 18mg - m^{3}}{54g^{2}}$$

$$\mathcal{M} = \begin{bmatrix} \left\langle X^{0} \right\rangle & \left\langle X^{1} \right\rangle & \left\langle X^{2} \right\rangle & \cdots & \left\langle X^{K} \right\rangle \\ \left\langle X^{1} \right\rangle & \left\langle X^{2} \right\rangle & \left\langle X^{3} \right\rangle & \cdots & \left\langle X^{K+1} \right\rangle \\ \vdots & \vdots & \ddots & \vdots \\ \left\langle X^{K} \right\rangle & \left\langle X^{K+1} \right\rangle & \left\langle X^{K+2} \right\rangle & \cdots & \left\langle X^{2K} \right\rangle \end{bmatrix} \geq 0$$

$$\downarrow^{\text{N}} \qquad \downarrow^{\text{N}} \qquad$$

Plot with m = 1

- This plot generated in less than 1 minute.
- But gets complicated as number of matrices increase



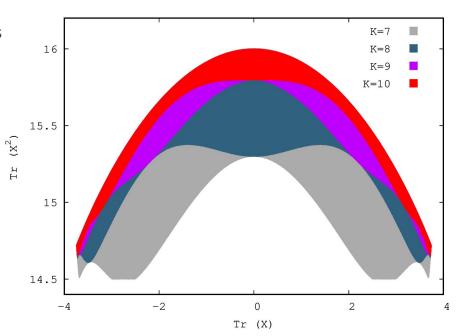
Numerical Bootstrap

$$V = m\frac{X^2}{2} + g\frac{X^4}{4}$$

→ Also useful when we have curve of solutions

Plot with
$$m = -1$$
, $g = 1/16$

Can we improve Monte Carlo to sample all the vacua in large *N* limit?



Future Directions

- → Numerical tools beyond Monte Carlo, especially for lower dimensional models
 - Numerical bootstrap is a viable option to investigate Matrix Models JHEP 06 (2020) 090 Lin

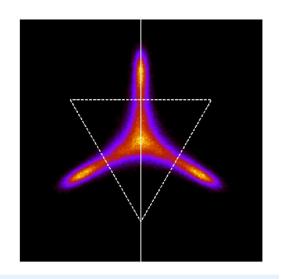
- → Numerically investigating non-gauge/gravity <u>JHEP 04 (2018) 084</u> Maldacena, Milekhin
 - Recent numerical results <u>JHEP 08 (2022) 178</u> Pateloudis et al.

→ Continue exploring non-maximal and maximal supersymmetric theories

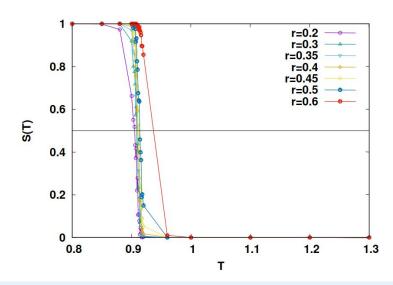
→ Improving Monte Carlo Method

THANK YOU

Separatrix

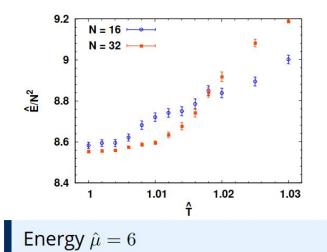


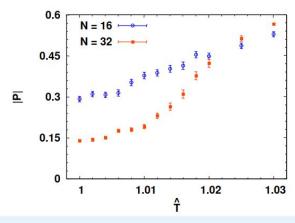
PRD 91 (2015) 096002



Separatrix ratio vs r $N=32, \hat{\mu}=2$

BBMN Results





Polyakov Loop $\hat{\mu}=6$

First order transition

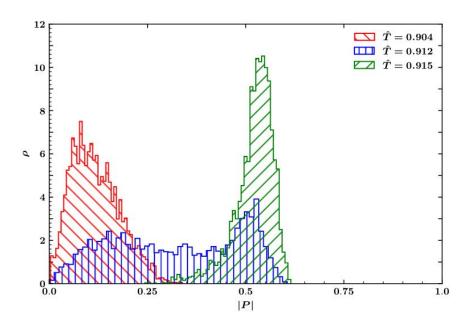


FIGURE 4.12: Polyakov loop magnitude distribution at three different temperatures for $\widehat{\mu}=2.0$ with N=48. A two-peak structure appears to develop more clearly as compared with lower N values.

AP BC Fermions

Thermal green function

$$G_B(x, y, \tau_1, \tau_2) = Z^{-1} Tr \left[e^{-\beta K} T \left[\hat{\phi}(x, \tau_1) \hat{\phi}(y, \tau_2) \right] \right]$$

using step fn. with $\tau_1=\tau$, $\tau_2=0$ and cyclic property of trace

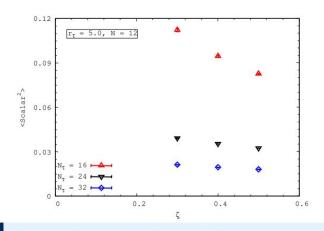
$$G_B(x, y, \tau, 0) = Z^{-1} Tr \left[\hat{\phi}(y, 0) e^{-\beta K} \hat{\phi}(x, \tau) \right]$$

$$G_B(x, y, \tau, 0) = Z^{-1} Tr \left[e^{-\beta K} e^{+\beta K} \hat{\phi}(y, 0) e^{-\beta K} \hat{\phi}(x, \tau) \right]$$

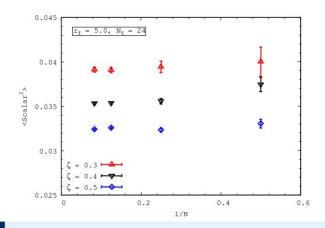
$$G_B(x, y, \tau, 0) = Z^{-1} Tr \left[e^{-\beta K} \hat{\phi}(y, \beta) \hat{\phi}(x, \tau) \right]$$

If ϕ 's are bosons last two interchanged gives $\phi(y,\beta) = \phi(y,0)$, if ϕ 's are fermions (say ψ) last two interchanged gives extra -ve sign $\psi(y,\beta) = -\psi(y,0)$, hence APBC for fermions

Bound state 2d

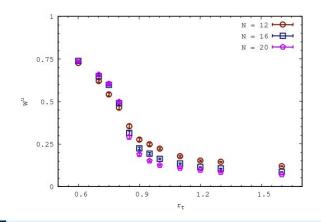


Bound state vs lattice size

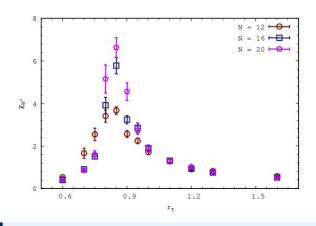


Bound state vs gauge group

Transition order 2d

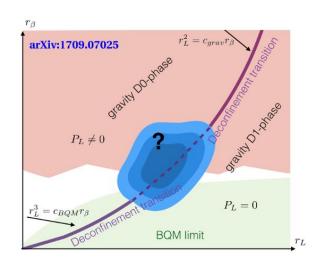


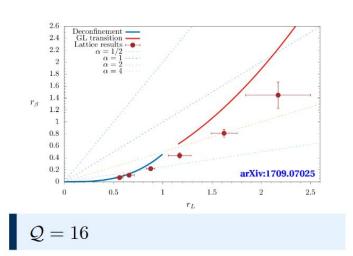
Wilson loop dependence on N



 χ vs N hints second order phase transition

Maximal theory 2d





Fermion doubling

Dirac propagator free theory:

$$S = \frac{m - ia^{-1} \sum_{\mu} \gamma^{\mu} \sin(p^{\mu}a)}{m^{2} + a^{-2} \sum_{\mu} \sin(p^{\mu}a)^{2}}$$

For low momenta pole at $p^{\mu}a = (am, 0, 0, 0)$

But fifteen additional poles at $p^{\mu}a = (am, 0, 0, 0) + \pi^{\mu}$

As $sin(p^{\mu}a)$ has two poles in range $p^{\mu}=[-\pi/a,\pi/a]$