Insights into Dibaryon Interactions in the Heavy Quark Sector

https://navdeep-dhindsa.github.io/ Talk slides will be available at

navdeep.s.dhindsa@gmail.com

Work in collaboration with

M. Padmanath (IMSc Chennai) and Nilmani Mathur (TIFR Mumbai)

Funding resources

Deuteron

- Deuterium destroyed in interior of stars faster than it is produced.
- All deuterium found in nature has origin from Big Bang nucleosynthesis. (Temperature hot enough to produce it but not hot enough to produce byproduct or get destroyed)
- Deuterium bottleneck after big bang and then only 20 minutes for nucleosynthesis.

Based on theory of strong interactions, we cannot rule out more dibaryons in nature.

Dineutron? Diproton?

NN scattering experiments indicates absence of bound state

Deuteron Dibaryon

Any object with Baryon number 2 Composed of six valence quarks Can be molecular or compact

- Discovered around a century back
- Proton (uud) Neutron (udd) bound state
- Binding Energy = 2.2 MeV

- Many predictions of various dibaryon states but failed experimental checks
- Recent renewal in interest due to discoveries of complex quark systems (not just baryons/mesons)
- Experimental evidence of existence of d*

Clement PPNP (2016)

1932

1950's

2010's

4

Navdeep Singh Dhindsa 15/07/2024

Hyperon-Nucleon

 E_{Cov MATHEMATICAN Experimental results indicate:

- AN interaction is attractive, though less than NN, there is no strange deuteron.
- *ΣN* interaction even weaker than ΛN .
- ΛΛ does not rule out bound system.

Jaffe

Jaffe prediction of dihyperons PRL 138 (1977) 195

- Theoretical calculations vary from very deep bound (even more than Jaffe's prediction) to unbound.
	-
	-

Santa Fe Workshop 2023 PRL 106(2011) 162002 Talk by Green

Lattice QCD - gives bound result (8 MeV) - Large pion mass used (discussed later).

Chiral effective field theory calculation - smaller binding energy.

Beane et al. PRL 106(2011) 162001

Inoue et al.

Haidenbauer and Meissner PLB 206(2011) 100

NAGARA event - constraint on binding energy

 Dedicated experiments for H dibaryon indicates existence unlikely but its existence not ruled out yet.

d*(2380)

1964 - Prediction of possible bound states

They predicted mass of D_{03} (close to d^* which was found later)

Dyson and Xuong PRL 13 (1964) 815

WASA @ COSY collaboration SAID Data Analysis Center PRL 112 (2014) 202301

s-channel resonance Pole in 3D_3 – 3G_3

Bremsstrahlung measurements

Kamae and Fujita PRL 38 (1977) 471

"An inevitable non-strange dibaryon"

Goldman et al. PRC 39 (1989) 1889

What's up at LHC??

• More interest around heavier hadrons

Picture from wiki

Today's discussion

• Baryons consisting of either strange or charm • Dibaryons consisting of either strange or charm

Lattice QCD Quark

Navdeep Singh Dhindsa 15/07/2024

 N_s is number of lattice sites

- First principles calculation
- Use MCMC to create ensembles of QCD configurations
- Most computational resources spent on generating gauge configurations and evaluating quark propagators

Hadrons

- Desire to understand nature through fundamental forces and interactions. Baryons and Mesons — Wide range of energy scale Recent experiments reveal missing baryon states, exotic tetraquark, and pentaquark hadrons.
- Lattice hadron spectroscopy predicted numerous bound states, including exotic hadrons.
- More progress for bound states stable under strong decay i.e. below threshold or for states closer to threshold

10

Navdeep Singh Dhindsa 15/07/2024

Deuteron

• Lattice calculations use *M^π* ≥ 300 *MeV*

HAL QCD, JHEP 1903 (2019) - Unbound Deuteron, Dineutron NPLQCD, PRD 107 (2023) - Bound Deuteron, Dineutron

- Discovered around a century back
- Proton (uud) Neutron (udd) bound state
- Binding Energy = 2.2 MeV

 $M_{\pi} \approx 800$ *MeV*

Why different observations from different Lattice studies?

Will this discrepancy be the case for heavier quarks?

Why heavier masses ? $m_u, m_d < m_{\pi}$

Navdeep Singh Dhindsa 15/07/2024

Light quarks are expensive

Noise $\propto e^{-\frac{3}{2}m_{\pi}t}$

Signal to Noise ratio exponentially degrades for $m_q \to 0$

$$
\cosh \alpha \left(\frac{1}{m}\right)^{1-2} \left(\frac{1}{a}\right)^{4-6}
$$

Signal (m_N hadron)

 $\propto e^{-m_N t}$

(*L*)

4−5

$$
m_u, m_d < m
$$

Error in propagator correlation function dominated by pions because of virtue of lower energy states

Lepage, TASI (1989)

Lattice - More Requirements

Apart from unphysical heavy light quark masses we need: Multiple ensembles for continuum limit. Even more computing power in contractions for exotic hadrons. $m_{\pi}L \geq 4$, to constraint finite volume effects. Finer lattices for lesser discretisation errors.

Interplay between choice of a, L, m_π to have better results

Baryons from Lattice

Alexandrou, Drach, Jansen, Kallidonis, Koutsou PRD 90, 074501 (2014)

 This calculation with $N_f = 2 + 1 + 1$

 Masses of low lying baryons using LQCD.

 Results consistent with experiments.

 Predictions for hadrons not experimentally measured at that time.

- Observations of heavier baryons improved in Lattice calculations over the years (and experimentally):
- Bigger (and finer) lattice calculations. In our current calculations we have used 64³ \times 192 lattice with lattice spacing $a \approx 0.044$ *fm*
- Improved algorithms $N_f = 0$ (quenched) $\rightarrow 2$ (*u*, *d*) $\rightarrow 2 + 1$ (*u*, *d*, *s*) $\rightarrow 2 + 1 + 1$ (*u*, *d*, *s*, *c*)
- Growth of machine power from certain GFLOPS to $\mathcal{O}(10)$ PFLOPS

Heavier Baryons from Lattice

15

M. Padmanath, CHARM 2020 Talk

Hadrons in charm sector.

***** Xi double-charm baryon lattice calculation before experimental prediction.

 ILGTI calculations matches precisely with other calculations.

Benchmarks for lattice calculations.

: Brown et.al. '14 : PACS-CS '13 : Briceno et.al. '12 : Durr et al. '12

 Ω_{cc}^*

Heavier Baryons from Lattice

 Effective mass = log [*C*(*t*) $\overline{C(t+1)}$

$$
= \langle 0 | O_j(t_j) \bar{O}_i(t_i) | 0 \rangle = \sum_n \frac{Z_i^{n*} Z_j^n}{2m_n} e^{-m_n(t_f - t_i)}
$$

Masses from Lattice

Euclidean two point correlator as: $C_{ji}(t_f - t_i) = \langle 0 | O_j$

 $O_j(t_f)$ and $\overline{O}_i(t_i)$ are the desired interpolating operators and $Z_j^n = \langle 0 | O_j | n \rangle$

Operator for baryon: $\mathcal{O} = \epsilon_{abc}q_{1,\mu}^{a,f}$ 1 $1, \mu_1$ $q_2^{b,f}$ 2 $2, \mu_2$ $q_3^{c,f}$ 3 3,*μ*³

- Total wave function for baryon (fermion) anti symmetric
- Single (symmetric) flavor, color anti symmetric
- Spin must be symmetric $-3/2 H^+$ irrep

In this work we focus on single flavored baryons

H⁺ irrep has two embeddings corresponding to

non-relativistic and relativistic operators

Operators Contraction

Non Relativistic Embedding [N]

Relativistic Embedding [R]

 $+314$ $+324\,$

- We can choose different embedding for different operators
- Effectively single contraction

Basak et al., PRD 72, 074501 (2005)

19

Operators Contraction N-N N-R

Baryonic matrix constructed out of both non-relativistic and relativistic operators on which we apply GEVP

- Larger overlap if we use just N-N operator combination
- We use full matrix to show that there is no excited state contamination

R-N R-R

- Time reversed backward propagator used to double data
- Negative parity calculation also done

Lattice Setup

- Overlap action on background of Highly Improved Staggered Quark (HISQ) gauge configurations. • Strange and charm masses set at physical values.
-
- Up and down set as degenerate masses heavier than physical values.
- Finest lattice used $a \approx 0.044$ *fm* with Volume as $64^3 \times 192$

Bazavov et al., PRD 87 (2013) 5, 054505

Ensembles

 \bar{M}_{av} = 1 $\frac{1}{4}$ $\left(M_{\eta_c} + 3M_{J/\psi}\right)$

- Configurations generated by MILC.
- Discretisation effects highest in triply charmed baryons.
- Instead of effective mass in charmed baryons, we will plot effective splittings.

 M_h − 3 2 \bar{M}_{av}

Ω*ccc* **Baryon**

 $\bar{M}_{av} =$

In Progress: NSD, Padmanath, Mathur

1

$A + Ba^{2} + Ca^{2} ln(a) \text{ fit}$ $\bar{M}_{av} = \frac{1}{4} (M_{\eta_{c}} + 3M_{J/\psi})$

Padmanath, Edwards, Mathur, Peardon PRD 90 (2014) 074504

Ω*ccc* **Baryon**

Will we see experimental observation of Ω_{cc} and Ω_{ccc} soon?

In Progress: NSD, Padmanath, Mathur

Negative Parity

Ω*ccc* **Baryon**

In Progress: NSD, Padmanath, Mathur

Tuning charm mass

Ω **Baryon**

In Progress: NSD, Padmanath, Mathur

26

Hadron with 6 quarks

Extensive studies of deuteron like heavy dibaryons using Lattice QCD

We work with single flavored dibaryons composed of strange and charm quarks named as \mathcal{D}_{6s} and \mathcal{D}_{6c} respectively

 $\Delta E = E_{\text{dibaryon}} - E_{1\text{st baryon}} - E_{2\text{nd baryon}}$

 \mathscr{D}_{6b} , $S = 0$

Navdeep Singh Dhindsa 15/07/2024

Dibaryons results from Lattice

Mathur, Padmanath, Chakraborty PRL, 130, 111901 (2023)

 bc , \mathscr{D}_{bs} , \mathscr{D}_{cs} , \mathscr{D}_{bu} , \mathscr{D}_{cu}

Junnarkar, Mathur PRL, 123, 162003 (2019)

 $S = 1$

 \mathscr{H}_{bcs} , $S = 0$

Junnarkar, Mathur PRD, 106, 054511 (2022)

Where does \mathcal{D}_{6c} , \mathcal{D}_{6s} stand ??

 $= \epsilon_{abc}q^a_{\mu_1}$ q^b_μ μ ₂ q^c_μ $μ_3$

$\mathcal{O}_d = \mathcal{O}_1$. CG . \mathcal{O}_2

Dibaryon Operators

- Total wave function anti-symmetric under exchange of baryons.
- Single flavor baryons (symmetric).
- Assume only s wave interactions (symmetric) in dibaryon system.
- Color singlet baryons (symmetric)
- Hence Spin must be anti-symmetric which is in case of even spin (Spin 0 and 2)
- Use reduction coefficients to project continuum based operators to suitable octahedral group.
- $S = 0$ continuum spin subduces to one dimensional A_1^+ irrep. 1
- $S = 2$ continuum spin subduces to two dimensional E^+ and three dimensional T_2^+ irrep. 2

[0] $d, A_1, 1$ = $\frac{1}{2}$ For Spin 0, dibaryon operator corresponding to one dimensional A_1^+ irrep. 1

For Spin 2, 5 such operators corresponding to E^+ and T_2^+ irrep.

1 *a H*3/2 *bH*−3/2 −*^a H*1/2 *bH*−1/2 +*^a H*−1/2 *bH*1/2 −*^a H*−3/2 *bH*3/2) **Dibaryon Operators** a,b - different embeddings

2

Non Relativistic Embedding | Relativistic Embedding |

Operator Contraction

Now we have two baryons at source and two at sink

720 contractions can happen in 16 different

ways depending on different embeddings

 $R-R-N-N$

Some of these are degenerate and some of these do not contribute at all for different Spin cases

Buchoff, Luu, Wasem

• Weakly repulsive in Spin 0 H^+H^+ irrep, No bound state PRD 85, 094511 (2012) • "Such a system can be best searched experimentally by the pair-momentum correlation in relativistic heavy-ion collisions."

23 • Attractive in Spin 1,2 $G_1^+H^+$ but only single volume used.

• Weakly attractive in Spin 0, hence bound state

PRL 127, 072003 (2021)

• Near unitary region with Coulomb interaction (scattering length less than corresponding

- Simulation with physical charm mass and near physical light quark mass.
- Dibaryon existence without Coulomb interaction.
- strange dibaryon calculation).

Is this a bound state?

★ Quoting bound state and binding energies directly from energy splittings of product hadron and its constituents.

- ★ Extract hadron-hadron interactions by solving QM potentials from Nambu-Bethe-Salpeter wave function.
- ★ Luscher's formalism relating discrete finite-volume energy spectrum to few-body scattering amplitudes in the infinite limit.

Energy spectrum

In Progress: NSD, Padmanath, Mathur

- **Dependence of minimum time slice** for fitting.
- Effective masses from lattice by using Dibaryon Spin 0 operator, one operator of Spin 2 for Dibaryon.
- Comparison with twice the effective mass from Baryon operator.

50

55

In Progress: NSD, Padmanath, Mathur

Luscher's

 $\left\langle \frac{c}{c} \right\rangle$

- Two lattice volumes, 4 lattice spacings, this plot with $L = 48$
- Spin 2 repulsive interactions, Spin 0 dibaryon energy same as twice of baryon

In Progress: NSD, Padmanath, Mathur

HALQCD PRL 127, 072003 (2021)

- Bound state, if exist, is shallow
- More probe using Luscher's formalism

Bound state without Coulomb interaction

In Progress: NSD, Padmanath, Mathur

• More probe using Luscher's formalism

• No bound state

Buchoff, Luu, Wasem PRD 85, 094511 (2012)

No bound state

HALQCD PRL 120, 212001 (2018)

Bound state exists

-
-
-

Conclusions

★ Simulations with finer and big enough lattices. \star Ω and Ω_{ccc} calculations with more ensembles in the continuum limit. \star Dibaryon investigation in $\Omega - \Omega$ and $\Omega_{ccc} - \Omega_{ccc}$ systems. ★ Prediction: Absence of bound state (or very weakly bound state if any)

Future Directions

★ Luscher's formalism for dibaryon investigations. \blacktriangleright Initial calculations indicate similar behaviour of E^+ and T_2^+ irrep, more detailed analysis to follow.

★ Do the heavier baryons composed of charm and bottom quarks and their corresponding dibaryons (if exist as a bound state) survive with temperature ?

★ Lattice estimation of d*(2380)…

-
- 2
-

