

/AN _____

Nilmani

Mathur

Exploring Baryon-Baryon Interactions Using Lattice QCD

Navdeep Singh Dhindsa

navdeep.s.dhindsa@gmail.com

02/04/25

HADRON IN NUCLEUS (HIN25)

M Padmanath

Computing Resources and Collaboration

https://navdeep-dhindsa.github.io/

Outline

- Lattice QCD and spectroscopy
-) Precise calculation of Ω_{ccc}
- Single flavoured dibaryons

	\leq
4	
	•

Hadron Spectroscopy

HIN25

11.5

11.0

10.5

7.5-

7.0

6.5

6.0

Mass [GeV/c²] 6.5 6.5 7.0 7.0

3.5

3.0

2.5

2.0

- Lattice hadron spectroscopy predicted numerous bound
- states, including exotic hadrons.

STATE OF THE ART

More progress for bound states stable under strong decay.

Masses from Lattice

$$\langle 0 | O_j(t_f) \bar{O}_i(t_i) | 0 \rangle = \sum_n \frac{Z_i^{n*} Z_j^n}{2m_n} e^{-m_n(t_f - t_i)}$$

Navdeep Singh Dhindsa

Heavier single flavor baryons offer simplistic system for studying quark-quark interactions and quark confinement without the complexities of valence light quark dynamics.

- Precise prediction can guide the experiments in discovering Ω_{ccc} in near future.
- Six $N_f = 2 + 1 + 1$ HISQ lattice ensembles
- generated by MILC collaboration.
- Two actions for valence quarks, HISQ and Overlap.
- Wall source to point sink setup for contractions.

HIN25

arXiv:2411.12729 NSD, Chakraborty, Radhakrishnan, Mathur, Padmanath

S_z	Operator [N]	Spin	Operator [R]	Spin
+3/2	$^{1}H_{3/2}$	${111}_{S}$	$^{2}H_{3/2}$	$\{133\}_S$
+1/2	$^{1}H_{1/2}$	$\{112\}_{S}$	$^{2}H_{1/2}$	$\{233\}_S + \{134\}_S + \{1$
-1/2	$^{1}H_{-1/2}$	$\{122\}_{S}$	$^{2}H_{-1/2}$	$\{144\}_S + \{234\}_S + \{2$
-3/2	$^{1}H_{-3/2}$	$\{222\}_{S}$	$^{2}H_{-3/2}$	${244}_{S}$

 $xyz_S = xyz + yzx + zxy$

Extended operator basis in Overlap calculation

 $C_b(t) = \begin{bmatrix} \mathcal{O}_{b,H}^N \mathcal{O}_{b,H}^N & \mathcal{O}_{b,H}^N \mathcal{O}_{b,H}^R \\ \\ \mathcal{O}_{b,H}^R \mathcal{O}_{b,H}^N & \mathcal{O}_{b,H}^R \mathcal{O}_{b,H}^R \end{bmatrix}$

HIN25

Charmed system - much cleaner signals Extended basis helps with strange system as well: Not reported yet

arXiv:2411.12729 NSD, Chakraborty, Radhakrishnan, Mathur, Padmanath

S²*ccc*

HIN25

 Ω_{ccc} .

two valence actions.

• Our estimate for
$$\Omega_{ccc} \left(\frac{3}{2}\right)^+$$
 is 4793(5)(7) MeV

arXiv:2411.12729 NSD, Chakraborty, Radhakrishnan, Mathur, Padmanath

\mathbf{S}_{ccc}

HIN25

Most precise results for ground state mass of \blacklozenge triply charmed spin-3/2 baryon using lattice.

We also give estimate to mass of $\Omega_{ccc}\left(\frac{3}{2}\right)$ to be 5094(12)(13) MeV.

First calculation with continuum limit for a set of ensembles with lattice spacings.

We take into account all possible sources of systematic errors that can affect our calculation.

arXiv:2411.12729 NSD, Chakraborty, Radhakrishnan, Mathur, Padmanath

- Deuteron only dibaryon confirmed (signal of d*).
- Lesser prospect of discovery for heavy dibaryons but good test bed for baryon-baryon interactions, lesser light quark effects.
- Lighter dibaryons investigated with very high unphysical pion mass due to signal-to-noise ratio. Contrasting results on the lattice.

QCD - theory of strong interactions; can't rule out more dibaryons in nature

Dyson and Xuong PRL 13 (1964) 815

1964 - Prediction of possible bound states

They predicted mass of D_{03} (close to d* which was found later)

On Lattice: Signal to Noise ratio exponentially degrades for $m_q \rightarrow 0$

Lepage, TASI (1989)

Our this work we focus on:

WASA @ COSY PRL 112 (2014) 202301

HIN25

 $\mathcal{O}_d = \mathcal{O}_1 \cdot CG \cdot \mathcal{O}_2$

Total wave function anti-symmetric under exchange of baryons.

Single flavor baryons (symmetric).

Assume only s wave interactions (symmetric) in dibaryon system.

in case of even spin (Spin 0 and 2)

HIN25

PoS(LATTICE2024)082, arXiv:25xx.yyyyy NSD, Mathur, Padmanath

Use reduction coefficients to project continuum based operators to suitable octahedral group.

$$[S] \mathcal{O}_{d,\Lambda,\lambda}^{a,b} = \sum_{S_j} \mathcal{S}_{\Lambda,\lambda}^{S,S_j} \mathcal{O}_d^{[S,S_j]a,b}$$

HIN25

$$\mathcal{O}_d = \mathcal{O}_1 \cdot CG \cdot \mathcal{O}_2$$

 \blacklozenge S = 0 continuum spin subduces +1/2-1/2to one dimensional A_1^+ irrep. -3/2

S = 2 continuum spin subduces to two dimensional E^+ and three dimensional T_2^+ irrep.

$$\mathcal{O}_{d,A_1,1}^{[0]} = \frac{1}{2} \left({}^{a}H_{3/2} \ {}^{b}H_{-3/2} - {}^{a}H_{3/2} \right)$$

PoS(LATTICE2024)082, arXiv:25xx.yyyyy NSD, Mathur, Padmanath

+3/2

Operator [N]	Spin	Operator [R]	Spin
$^{1}H_{3/2}$	${111}_{S}$	$^{2}H_{3/2}$	$\{133\}_S$
$^{1}H_{1/2}$	${112}_{S}$	$^{2}H_{1/2}$	$\{233\}_S + \{134\}_S + \{143\}_S$
$ ^{1}H_{-1/2}$	$\{122\}_{S}$	$^{2}H_{-1/2}$	$\{144\}_S + \{234\}_S + \{243\}_S$
$^{1}H_{-3/2}$	${222}_{S}$	$^{2}H_{-3/2}$	${244}_{S}$
		a,b	- different embed
		a,b	- different embed
$f_{1/2} b H_{-1/2}$	$+^{a}H_{-1/2}$	$_{2} bH_{1/2} - a H$	$I_{-3/2} b H_{3/2}$

HIN25

Model calculations for both fully strange and charmed systems remains conflicting

- Plot for charmed system for $48^3 \times 144$ lattice.
- Similar behaviour for all operators in S = 2.
- \mathscr{D}_{6c} shows a signal of attractive interaction.

HIN25

PoS(LATTICE2024)082, arXiv:25xx.yyyyy NSD, Mathur, Padmanath

For all the ensembles observed repulsive behaviour for Spin 2 sector (also for strange system).

HIN25

PoS(LATTICE2024)082, arXiv:25xx.yyyyy NSD, Mathur, Padmanath

16

HIN25

Work in progress

- Better understanding of interactions Luscher's formalism
 - Lattice investigations of lighter hadrons
 - Exotics at exotic conditions.

More work around hadrons using Lattice @IMSc: https://www.imsc.res.in/~padmanath/index.html#/publications

Thank you for your attention

Thanks to ANRF, IMSc and YITP

Questions?

