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Lattice Why?

Perturbation successful tool for investigating problems in particle physics but it breaks down for strongly interacting

systems

e Confinementin QCD.

Incorporating non-perturbative effects.

Phase transitions.

e Beyond the Standard Model and String theory.

Lattice field theory provides a numerical technique to study non-perturbative phenomena by simulating the

interactions of particles on a discrete space-time lattice.

Allows the use of first principles calculations



Lattice How?

With the help of the Euclidean path integral, we can understand the dynamics of the theory by regularising it on a space-time lattice.

|

Real time to Euclidean path integral by Wick rotation, to avoid oscillations in numerical runs.
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e Holographic motivation for studying theories non-perturbatively
e Supersymmetric Quantum Mechanics

e Supersymmetric Yang-Mills and their lattice construction

e Phase structure Bosonic BMN

e Phase structure 4= (2,2) SYM

e Conclusions and Future directions



Gauge/Gravity Duality

Adv. Theor. Math. Phys. 2 (1998) 231-252 Maldacena
4d 4= 4 SYM dual to Type IIB supergravity in decoupling limit

Maximally supersymmetric Yang-Mills (MSYM) theory in p+1 dimensions is dual to
Dp-branes in supergravity at low temperatures in large N, strong coupling limit.

PRD 58 (1998) 046004 Itzhaki et al.




Gauge/Gravity Duality

Hence, if we want to study this conjecture from field

Gauge < Gravit
9 y theory side, we need a non-perturbative setup.

Stron Weak
g < Wea LATTICE is one such non-perturbative alternative.

Non-perturbative information of String theory with help of AdS/CFT, Matrix Models

e 4d MSYM difficult to simulate using lattice setup as computationally costly.
e This talk will revolve around non-conformal 1d and 2d theories, for which only a handful of

lattice studies exist to probe duality.



Supersymmetry

Beautiful and elegant way to connect bosons and fermions

Q'BOSOn> — |Fermi0n> But experimentally

not observed and
broken

Q|Fermion) = |Boson)

Dynamical breaking can only happen because of
non-perturbative effects

Standard Model is highly successful

However

Not UV complete

* Many free parameters
* Hierachy problem
Dark Matter

Beyond the SM

* String Theory

« Supersymmetric (SUSY)
extension of SM

+ Grand Unified Theories

All needs SUSY (in one form or the
other)



SUSY on Lattice

SUSY algebra extension of Poincare algebra {Q, Q} i P’u

Pu = generates infinitesimal translations = Broken on lattice

Lattice studies of supersymmetric gauge theories

Recent review: ERPJ ST (2022) Schaich

Though SUSY broken on Ilattice but we can preserve a subset of the algebra

SUSY Yang-Mills theories discretized on lattice using “orbifolding” or “twisting” procedure

Phys.Rept. 484 (2009) 71-130 Catterall, Kaplan, Unsal
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Abstract We i i bative supersy y breaking in various models of quantum mechanics, including an inter-
esting class of PTAmvan:ml models using lattice path integrals. These theories are discretized on a temporal Euclidean lattice with
anti-periodic boundary conditions. Hybrid Monte Carlo algorithm is used to update the field configurations to their equilibrium val-
ues. We used the Ward identities, expectation value of the action, and the expectation value of the first derivative of the superpotential
as tools for probing supersymmetry breaking.

1 Introduction

We canuse h 1p ining b

asatestbed toil and fermions.
Since Witten's seminal work [1]. the idea of non-| penurbame <uper€ymmetry (SUSY) bneakmg has been investigated extensively
in the literature. These investigations range from studying the properties of supersymmetric quantum mechanics to supersymmetric
gauge theories in various spacetime dimensions [2-11]. In this work, we investigate non-perturbative SUSY breaking in various

quantum mechanics models by regularizing them on a Eucli lattice. Sup ic quantum mechanics models have been the
subject of thorough investigations in the context of various physical systems over the past few decades (see Ref. [1"‘] for a review).
For example, the model with a quartic superp 1( ic anharmonic oscillator) has been simulated on the lattice, by
several groups, over the past ten years or so, with great succe« (see Refs. [13-19]). In this work. we explore supersymmetric quantum
mechanics with various types of superp Is, includi lhc ing class of PT-invariant p ials. After verifying the existing
simulation results in the literature on sup ic ic oscill with the help of a lattice regularized action, and an

efficient simulation algorithm, we use the same setup to probe SUSY breaking in models with three different superpotentials. They
include a degree-five potential, a shape-invariant potential of Scarf I type, and a certain type of PT-invariant potential. Although the
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Before investigating SYM theories: Let’s investigate a simpler
example of SUSY Quantum Mechanics

Eur. Phys. J. Plus 137, 1155 (2022) NSD, Joseph

e Atestbed to understand supersymmetry on lattice.
e  Supersymmetry broken/preserved checked for different

superpotentials.
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SUSYQM Nucl. Phys. B 188 (1981) 513 Witten

p 1 _ . L
5:/0 dT<—§¢33¢+¢aQ¢:¢, QY =—0:0+W', QY =0,
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e Integrating out auxiliary field ‘B’ @¢ — _¢7 @w — O, @E — 87'¢ + W/-
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For supersymmetry broken case, Witten index vanishes.

SUSYQM Vice-versa not generally true.

No SSB SSB
1 = 1
L Q) 1) = e Qlbas) b)) = Q) 1) = Qlbn)

2l v 2E,

Does not vanish Vanishes

Hence AP boundary

conditions used <O> — Z—l /D¢ O[¢] G_S[Cb] Observations using numerical runs unreliable

throughout runs
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SUSYQM on Lattice

° Bosonic fields to lattice sites.
° Fermionic fields to lattice sites - Fermionic Doubling

We use Wilson fermions in our setup

1
Kz’j = m57;j — 5 (5i,j+1 T 5z’,j—1 - 252])

Phys. Lett. B 105 (1981) 219-223
Nielsen, Ninomiya

Nielsen-Ninomiya no-go
theorem

Not possible to construct lattice
fermion action which is:

* Ultra local

* Preserves chiral symmetry

+ Has correct continuum limit
* No doublers

Fermions: 4d
* Naive: 16 fermions

* Ginsparg-Wilson: Not ultra
local

* Staggered: 4 fermions

« Wilson: 1 fermion, ultra local

action but chiral symmetry only
recovered in continuum

13



SUSYQM on Lattice

Still not ready to simulate

e Fermionic matrix size depends upon number of
lattice sites

Computational cost of finding determinant is very
high

Hence an alternative is required

PSEUDO-FERMIONS

\/det(MTM)

Phys. Lett. B 487 (2000) 349-356

1 — — 1
5= [ar (—5¢83¢ + PO+ YW () + 5 [W’(¢)]2)

Z = / DDy D) e PBOF
Integrating out fermions

Z

/ D¢ det(M) e~ o8

/DX e X (

Catterall, Gregory

Conjugate
Gradient
Algorithm
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EPJP 137 (2022) 1155 NSD, Joseph

SUSYQM

AS = <S>exact - <S> = Ny — <S> Besults

If the observable is zero then SUSY preserved
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EPJP 137 (2022) 1155 NSD, Joseph

(W) Resnlte

If the observable is zero then SUSY preserved
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EPJP 137 (2022) 1155 NSD, Joseph

_ SUSYQM
wi(n) = (¢o(Dnrdr + W) + (¥,0) Besu?ts

If the observable fluctuates around zero then SUSY preserved
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e Takeaway

Degree 4 W (¢) = mo + g¢? Preserved
Degree 5 W (¢) = m¢ + g¢*  Broken SUSYQM
Scarf W (¢) = A\a tan(ag) Preserved

PT-symmetric*  W'(¢) = —ig (ip)"™®  Preserved
*For PT-symmetric superpotentials, only worked with even values of §
e Monte Carlo

° Lattice Let us use combination of these for models with fields as matrices

e  Supersymmetry

18



SYM families

‘__ ’github.com/daschaich/susy

Lower dimensional SYM theories can be constructed by dimensionally reducing higher dimensional

A4=1SYM theories

16 supersymmetries
Maximal SYM family

8 supersymmetries 4 supersymmetries
Non-Maximal SYM families

I
d=3,i/\/=4 d—2 N (22 )
d=2,N = (4,4

Lattice construction using ‘twisting’ requires 2¢
supersymmetries

19



MPI based parallel code.

Evolved from MILC code (which is developed by MIMD Lattice
computation collaboration).

Code is based on distributed memory systems. Can be tested on
single-processor workstation or high performance computers.

Performs RHMC simulations of SYM theories in various
dimensions.

Parallelization is between lattice sites, not on matrix degrees.

‘0 e BEe JaEe B

github.com/daschaich/susy

20



SUSY on Lattice

Lattice simulations of supersymmetric theories slightly complicated

e Broken SUSY on lattice

e Duality check requires runs at large N, computationally expensive

e Flatdirections » [ X, XJ. ] =0 = but scalar eigenvalues keeps on increasing because of access to
continuum branch of the spectra

e Sign problem =+ Boltzmann factor e cannot be used as weight in stochastic process

21



N 7 712
Finite N effects S5 = =gy 2 T (X" XT?)

2¥}

Will tune eigenvalues of a (10 x 10) matrix constructed out of scalars of bosonic IKKT model

T = % Tr(X'X7)
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Elat direCtions BFSS model Runaway of scalars

30 T T T T
X %X X3 X5 O X; A %o
X, X, = Xs ® Xg A
25 F il
This runaway can be controlled by:
20 1 A i
0. A . .
o it e Adding a deformation term to the
¥ o1s | a2 action and then fine-tuning it to
é " recover target theory.
0l ] e By working with very large N.
5| - 1

0 20 40 60 80 100
MC Time
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Non-perturbative phase structure of the bosonic BMN
matrix model

Navdeep Singh Dhindsa,” Raghav G. Jha,” Anosh Joseph,® Abhishek Samlodia®
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ABsTRACT: We study the bosonic part of the BMN matrix model for wide ranges of
temperatures, values of the deformation parameter, and numbers of colors 16 <
Using lattice computations, we analvze phase transitions in the model, observing

(128 j9pe1ce combigggionz’ w6 sus[rx6 bps=e (Lyp=1002 10 (P6 WOGE]" 0pRELAINE ¥ 2086

L
YB2LEVCL: g6 2(0qs (pe pozonic buig of (pe6 Byl WYX Woqe] [OL w16 19186 of

remberggniez’ 491062 Of (P6 qoIOLINEFION bYLIMIGIGL: $1Iq IAIPELE Of CO[OL2 [Q =

Let us start with one dimensional matrix model which is the
BMN model, without fermions

JHEP 05, (2022) 169 NSD, Jha, Joseph, Samlodia, Schaich

e No sign problem (as no fermions)

e No flat directions (model itself includes such deformation
terms that controls these flat direction issues)

e  Worked with different sizes of matrices to counter finite N

effects

24



Matrix Models

N (P 1
BFSS Model SBFSS = —/ dr Tr{ — (D Xo)* = 5 ) [Xi, X7
0

4\

E/N? = 7.41T/5

PRD 58 (2016) 094501 Hanada et al.

Tested the gauge/gravity duality conjecture
by computing the internal energy of the black
hole directly from the gauge theory

Also provided stringy corrections to this
Internal Energy

2

1<J

+ \IjafyaaD U, + lIIo/Yoaf [X% \IICT] }

e SO(9) rotational symmetry

A recent study using Gaussian expansion shows
this symmetry broken like IKKT model
arXiv:2209.01255 Brahma, Brandenberger, Laliberte

e Single deconfined phase in the theory

A recent study with first results of confined phase
JHEP 05 (2022) 096 Bergneretal. 25




N [B

2 2
S,=—— [ dr Tx (EXI) + (EXA)  BgTytosy

ax J, 3 6 4

e Mass deformed version of BFSS
e SO(9) explicitly broken into SO(6) X SO(3)
e First order phase transition

Different phases of the gravity dual

JHEP 03 (2015) 069
Costa, Greenspan, Penedones, Santos

Open: Other thermodynamic properties ?7?

V2u
3

etk X1 Xj XK

«

Recent numerical studies to get
these phases in gauge theories

PoS LATTICE21(2022) 433
Schaich, Jha, Joseph
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No fermions

—=> (Clear deconfinement transition even in BFSS model

Easier to simulate
=> Can work with large N setup

Nr-1

ZTr

n=0

N

Sla
=l 4)\lat

@ e —

-

: Z [Xia Xj]2

i<j

3

JHEP 05 (2022) 169 NSD, Jha, Joseph, Samlodia, Schaich

Hlat XI>2 (,ulat

6

XA) +

fﬂlat

Our setup
E E 2,u wl
—i= . = Tr ,,Z[X X latX2 Hiat x2
2 1/3 N2 4/3 < Z < A
N AM/BN ANXN/N; i< 18
£ —“’\[6’““ eIJKXIX‘]XK> >
10.5
9.5
%z g5
<uw
75 R s > o l=a0——
/ =20 ——
s p=10 ——
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3 —— e gk X1 X7 XK
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Polyakov Loop

Temperature

0.800

JHEP 05 (2022) 169 NSD, Jha, Joseph, Samlodia, Schaich

P

. 1
On lattice: |P| = <— Tr ( H U(n)
n=0
1
N=16 —e—
e
0.75 °
e
[ &
0.5 J:
4
¢
0.25 °
(]
e -
0 . : .
0.75 0.9 1.05 1.2
A
4
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Transition Order

x= N2 ((IP12) - (1P))?)

N=16 —e—
N=32 —a—
0.025
0.02 | {)
o
Z 0015 | {;
=
0.01 | %
* I
0.005 %
° o o
=] o o
0 8 L 8 8 2 2
0.8 0.9 1 1.1 1.2
A

JHEP 05 (2022) 169 NSD, Jha, Joseph, Samlodia, Schaich

Susceptibility peaks at same height with N?
normalization

First order phase transition PRL 113 (2014) 091603

Azuma, Morita, Takeuchi

SN 7°=0.945
IO 7 =0.949
32 T =0.953 ]
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PRD 91 (2015) 096002

] ]
separatrlx natlo Francis, Kaczmarek, Laine, Neuhaus, Ohno

1 1
A
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K WA
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JHEP 05 (2022) 169 NSD, Jha, Joseph, Samlodia, Schaich



Different phases

Angular distribution of Polyakov loop eigenvalues

£ T=08

T=08 =20
Uniform phase

T'=0913, pjs = 2.0
Non-uniform phase

=

2 T=13

I =13 =20
Gapped phase
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e Phase diagram smoothly interpolates between
bosonic BFSS and gauged Gaussian limit

JHEP 05 (2022) 169 NSD, Jha, Joseph, Samlodia, Schaich

Phase Diagram

Perturbative calculation valid until u =10,
below it we enter strong coupling regime

First-order phase transition at all couplings

.00330(2) JHEP 05 (2022) 096
0.8846(1) Bergneretal.

0.0893 Adv.Theor.Math.Phys. 8 (2004) 603-696
Aharony et al.
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Takeaway Bosonic BMIN

e  First order phase transition in the model at all values of couplings.

e  Perturbative calculations valid upto a certain regime.

e Flat directions do not create any numerical problems, larger N required to get transition points for
strong couplings.

e Numerical results smoothly interpolates between bosonic BFSS and gauged Gaussian limit.

e Separatrix method is a viable alternate option to investigate transition point.
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Deconfinement transition in two-dimensional SU(N)
Yang—Mills theory with four supercharges

Navdeep Singh Dhindsa,” Raghav G. Jha,”* Anosh Joseph,” David Schaich?

“Department of Physical Sciences, Indian Institute of Science Education and Research - Mohali,
Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India

b Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada

“Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, USA
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E-mail: navdeep.s.dhindsa@gmail.com, raghav.govind. jha@gmail.com,
anoshjoseph@iisermohali.ac.in, david.schaich@liverpool.ac.uk

ABsSTRACT: We study the large-N limit of two-dimensional Yang-Mills theory with four su-
percharges. Although this theory has no known holographic dual, we conduct numerical
investigations to check for features similar to the sixteen-supercharge theory. We compute ob-
servables such as the gauge-invariant Wilson loops, energy density, the extent of scalars, and
supersymmetric Ward identities with different lattice sizes and colors for a range of coupling.
Our result suggests a possible deconfinement transition associated with the spatial Wilson
loop, at large N, similar to the maximally supersymmetric case. However, the transition does
not continue to strong coupling and potentially implies a lack of holographic interpretation
for this minimally supersymmetric theory.

[oL gp12 WInng(A 20beLeAmImIGHLIC (PEOLA

o conpne (o 2prons conbym® snq bogengisya nubpiez v juck of pojoBLubpic myerbiepuron
Jjoob* g [9186 1y 2IUIJYL (O (P6 WYXIIY[A 20DELEANIIIGILIC C926° [OMGAGL' [JJ6 (LYTZIFION OG2
Om. 1620]p 2088622 v bozziple qeconpnemeny [LyvzIIon g220C19i6q 1P tpe 2bgrigy pp120m

FI£1¢ g ( I ( & I

Let us start with move to slightly more complicated model.
Two dimensional Yang-Mills with four supercharges including
fermions.

arXiv:2303.xxxxx [hep-lat] (Under Preparation)

PoS(LATTICE2021)433 (2022)
PoS(LATTICE2022)209 (2023) (In Press)

NSD, Jha, Joseph, Schaich

e No sign problem (in the region of interest)

e Numerical runaway due to flat directions (added explicit SUSY
breaking terms to control runaway)

e  Working with larger N more difficult as it is computationally

costly, but got good results with sufficient N values
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JHEP 07 (2013) 101 Wiseman About these peculiar powers from SYM

Lattice nesults For SYM theory in (1+p) dimensions
MSYM Bosonic action density o tP* , t>>1

oc t0420V5P)  tccy

In conformal case both these cases are equivalent

[ Open: Deconfinement transition still needs numerical probing in this theory. }

p=2 PRD 102 (2020) 106009 Catterall, Giedt, Jha, Schaich, Wiseman

p=1 PRD 97 (2018) 086020 Catterall, Jha, Schaich, Wiseman
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2d 0 =4 SYM

Regularized on lattice using “twisting”
Another alternative is “orbifolding”

Phys. Rept. 484 (2009) 71-130
Catterall, Kaplan, Unsal

Global symmetry:

) ) e Two possible twists possible as symmetry group
Four-dimensional contains two SO(2)’s

theory
SO(4)r x U(1)

Two-dimensional
theory
50(2)c x SO(2)p, X .
U()a, s/ SO(Q) = diag (50(2) = % SO(2) Rl)

A SO(2)" = diag (80(2)E A U(l)Rz)

36



2d 0 =4 SYM

Regularized on lattice using “twisting”
Another alternative is “orbifolding”

Phys. Rept. 484 (2009) 71-130
Catterall, Kaplan, Unsal

e Untwisted theory: 4 bosonic d.o.f., 4 fermionic d.o.f., 4 real supercharges

e Fermions, supercharges decomposed to integer spin representation and scalars, gauge fields combine to
give complexified field

e Twisted theory: d.o.f. Fermions and complexified gauge field

/ \

1, waa Xab -Aa
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2d 0 =4 SYM 1M, Yas Xab

Fermions

e Obtained by dimensionally reducing .4=1SYM in 4d
e No holographic description

1
S = —Q/d2ZU Tr <Xabfab+77[ aaDa] — §Ud>

[Daa Db] 8a i3 «Aa

A, +1X

Q-Aa = waa QZCL =0, Q?ﬁa =0,
QXab = _?aby Qn = Qd = 0.

38



After performing £ variation Zd Q — 4 SYM

— 1 =
S = ﬁ d2LL' TI‘( — Jrab./_"ab + 5 @aypa]2 _ XabD[a %D b] o UDa?/)a>

>,

f ! e Gauge field » Wilson link

o (x) = % (n), on links of square lattice
Us(n) |h2(n) J:IZ(n/
On e To preserve SUSY y _(n) lives on same
Lattice links as bosonic superpartners

e n(n) associated with site

Us(n
2(n) ﬁw(”) e .. (n)lives on diagonal
n(n) " N 1 2
- ()
L s grmn] T ()

Ui(n) Ui(n)
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Nu? — 2
e To control flat directions Stotal =S5+ 4>\,LL Z Tr (L{a(n)ua(n) — I[N)
lat n,a
rr /
e Worked with different mass deformations ,[L — C_ — C\/Xa — C >‘lat‘
N
re Ny
e Different aspect ratio lattices o= = ——
It N,

e Different gauge groups, anti-periodic boundary conditions for fermions
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Scalar? » Tr (X?)

Lattice Results 24 x 24 lattice, N =12

JHEP 07 (2013) 101

e Behaviour different than maximal cousin
e Existence of bound state at finite temperature
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Preserved SUSY

Lattice Results 24 x 24 lattice, N =12
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Spatial deconfinement transition

Lattice Results 24 x 24 lattice, N =12

Wilson loop along temporal and spatial direction
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(To appear soon) NSD, Jha, Joseph, Schaich

MC time history
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I

Phase diagram

Lattice Besults Different aspect ratio a, N =12

W Deconfined W Confined ™ Lattice results FQ—

W Deconfined W Confined " Lattice results FQ=—

Problematic regime in numerical simulations

(To appear soon) NSD, Jha, Joseph, Schaich
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Takeaway 2d 0 =4 SYM

e Scalars show bound state behaviour
e Spatial deconfinement transition, but only limited to weak coupling regime
e Thermodynamics different than maximal counterpart

e More analysis required to probe if it admits holographic description : Open
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Future Directions

=> Numerical tools beyond Monte Carlo, especially for lower dimensional models
€ Numerical bootstrap is a viable option to investigate Matrix Models JHEP 06 (2020) 090 Lin

=> Numerically investigating non-gauge/gravity JHEP 04 (2018) 084 Maldacena, Milekhin
€ Recent numerical results JHEP 08 (2022) 178 Pateloudis et al.

=> Continue exploring non-maximal and maximal supersymmetric theories

=> Improving Monte Carlo Method
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=> To derive the spectrum of the theory by checking the positivity of some of the observables.

€ Taking the help of loop equations to connect various orders of observables.

0} 00
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0101
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(okon) (0kr) - (ohox)

OlOK
010k
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Numerical Bootstrap V=m="-+g -

T 1 (12g + m?)1° — 18mg — m?
n n+2 __ jtrn—2—j —T X2 —
mW" + gW —ZOWW <N I )> 5dg2
]:
(X0 (X (XD e (XF) | o
bs b's XEY o [ x5 ®
o okt B okl s PN -
_<XK> <XK+1> <XK+2> <X2K>_ . )
° This plot generated in less than 1 minute. 0.75 |
° But gets complicated as number of matrices increase Du§ — - ™ " - - .
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Separatrix

I PRD 91 (2015) 096002
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First order transition

T
<1 7 =0.904
OO0 7 =0.912
2 T =0.915

1
0.75 1.0

FIGURE 4.12: Polyakov loop magnitude distribution at three different temperatures for ji =
2.0 with N = 48. A two-peak structure appears to develop more clearly as compared with
lower N values.
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AP BGC Fermions

Thermal green function
Ga(X,y,T1,72) = Z 1Tr [e‘BKT [gB(x, )Py, 7_2)]]
using step fn. with , = 7, 2 = 0 and cyclic property of trace
Ga(x,,7,0) = ZTr |9y, 0)e ¥ (x, 7)]
Gg(X,y,7,0) = Z~1Tr [e‘ﬁ’(e“”(gﬁ(y, 0)e PKp(x, 7)}

Ga(x,y,7,0) = Z~1Tr |e=*(y, B)(x, 7)]

If ¢'s are bosons last two interchanged gives ¢(y, 8) = ¢(y,0), if ¢'s are
fermions (say v) last two interchanged gives extra -ve sign
vy, 8) = —(y,0), hence APBC for fermions
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Transition order 2d
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I Wilson loop dependence on N x Vs N hints second order phase
transition



Maximal theory 2d
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Ward Identity

()= 5 [ DsO@)e )

()= 7 [ DOOW)e D11 - 35(9) + 7 [ DO 1 - d5(9)]

©)=(0)~ 5 / DYO(6)55(8)e =) + 5 / D60 (d)e5®),

As action is invariant under infinitesimal transformation §
Hence (60) =0
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Energy spectrum

Response: The action in (2.1) is

B
gi= " ar (—%czﬁ@fqb B0 2B+ TW(6)0 - BW’<¢>> . 28)
0

After integrating out the auxiliary field, we can write the Hamiltonian operator of the ac-

tion as

1(Hg © 1 [(-02+W"?2-—W" 0
H = = = = ’ I (29)
2\ 0 Hel * 0 ~82+ W2+ W"

Now depending upon the form of W, we can tell whether the ground state forms a singlet
or if it is degenerate. For the simplest superpotential derivative W’ = m¢, we can clearly see
that in the bosonic sector, the energy states are 0,m,2m,..., and in the fermionic sector, the

energy states are m, 2m, 3m, .. ..
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SUSY
Tn.

Response: Let us try to show an example of how these supersymmetries keep the action in-

variant. For simplification purposes, we will start from the continuum action as

il — o ik o
528 = /dT 52 (—§¢03¢ + 0. + YW ()Y + 5 [W’((b)]z> : (30)

The dynamical ¢ term in the action can be integrated, and it takes the form %(074‘))2. Now,

operating the supersymmetry transformations on the resultant equation

B = [drsy (5007 +T0b+TW @+ 5 WOT).
= / dr ((0:9)02(0-9) + 52(V0- + YW (9)¥) + W (¢)02(W'(9))) ,

- / dr (0,6 € 0, — D, + W)@+ W()0) + W ()W (9)ev) . (31)

One term in the above equation is not listed, which is operating the transformation on the

second derivative of the superpotential, as it gives v after operating the supersymmetry, and

1? = 0. Now let us expand the above equation

88 = [ dre (0,600 = (0:6+ W00+ W(G)0) + W(@W'())

/ dr —e((0roW" (9)v + W) ,

/ dr 8, (—eW'($)9) . (32)
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Eermion doubling

Dirac propagator free theory:

m —ia~' Y ~y*sin(p*a)

m? +a-23_  sin(p~a)?

For low momenta pole at p#a = (am, 0,0, 0)

But fifteen additional poles at p#a = (am,0,0,0) + =

As sin(p*a) has two poles in range p* = [—n/a, 7 /0]
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SUSY 2d Minkowski Action

1 1 I
S = 53 &z Tr{—ﬁFWF“ + iATH DA + Dy D oy

_ 1
+ AT G, Al + 5 [dm, $nll@™, 6" }
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S function - Backup

__og
dlog(p)

B(8)

*+ g: coupling parameter, p : energy scale
* B vanishes at particluar g, scale invariant

* N =4SYM, all beta functions vanish, energy-momentum tensor
traceless, charge associated with CT preserved, Conformal

+ Scale invariance not all 8 functions vanish

e3
faeo = 1o
ns _20p\ g
S (N i
Faco ( 6 3>167r2

* ng < 16 coupling increases with decrease in energy scale, no longer
rely on perturbation
oS

ogrv

gu
L= (7“ - 1) |F?

Only zero in 4d as trace of metricis 2 in it

L=

For YM
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